
Axisymmetric Magnetohydrodynamic Equilibria without a Wall 
D. Lortz and W. Haimerl * 
Max-Planck-Institut für Plasmaphysik, 85748 Garching, FRG 

Z. Naturforsch. 48a, 1131-1150 (1993); received September 21, 1993 

Starting from the ideal magnetohydrodynamic (MHD) equations, we consider the following 
axisymmetric configuration: a current-carrying plasma torus in a homogeneous magnetic field that 
is aligned parallel to the torus axis. At a certain field strength this configuration is in equilibrium 
without need of external current singularities such as wires or walls.The magnetic flux function is 
expanded in small inverse aspect ratio. The geometry of this configuration is completely determined 
to second order as a function of the profile parameters. 

1. Introduction 

1.1. Derivation of the Equation 

The magnetic field of any stationary current distri-
bution can be completely described in SI units by the 
two equations 

V x Z? = f i 0 j , (1) 

V • B = 0 . (2) 

The solenoidal property (2) is satisfied by the ansatz 

B = V x A. (3) 

The vector potential A here is determined apart from 
the gradient of a scalar function. With the Coulomb 
gauge V • A = 0 it holds that 

AA(r) = - n0j(r). ( 4 ) 

The solution of this second-order differential equation 
is Biot-Savart's formula familiar from electrodynamics: 

A{r) = Ho j(r') 
4 n J | r — r' \ 

v 

dV'. ( 5 ) 

Axisymmetric magnetic fields can be completely split 
into a poloidal and a toroidal component. The poloidal 
field can be expressed by the toroidal component Av 

of the vector potential and, if V x A is to describe just 
a poloidal field component, A itself should have just a 
toroidal component: 

A(p = — ^{R, z) Vq>. (6) 

* Present address: Thalkirchnerstr. 78a, D-80337 München. 
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physik, D-85748 Garching bei München. 

Like all scalar functions in an axisymmetric configura-
tion, the proportionality factor i j / (R, z) is independent 
of the toroidal angle (p. Furthermore, for the curl it 
follows that 

Bpol = 

Solving (6) for i\J yields 

il/(r) = -RA9(r). (7) 

This means that direct calculation of the flux function 
i/f (r) requires that only the (^-component of the vector 
potential A (r) of the current distribution be known. 
According to Biot-Savart it is generated solely by the 
toroidal current component: 

Av(r) = Ho 

471 

j<p(r') 

k - r ' | 
d F ' . (8) 

This is converted to the integral over the plasma cross-
section D [1]: 

= 1/Ä7Ä {[(1 - -2 fc2) *(*) - E(k)] 
•jJR', z') dR' dz', 

with the complete elliptic integrals of the first and 
second kinds 

E(k) = j ]/l - k2 sin2 6 dd 

and 

K(k) = 
d 0 

l/l - k2 sin2 6 
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as well as the so-called module of the integrals 

4 RR' 
k = 2 • (.R + R f + ( z - z ' ) 

Together with (7) this yields an expression for the flux 
function ip of a toroidal configuration with the <p-com-
ponent of the equilibrium current density j^R', z') and 
Green's function G {R, R', z, z') [2]: 

<P(R, z) = -no j] G(R, R', z, J)j9(R\ z') dR' dz' (9) 
D 

with 

G(R, R', z, z') = ~ j/WR [(1 - \ k2) K(k) - E(k)] 

and 
2 dp 

If the plasma torus is left to itself, it will expand as a 
result of the radial forces exerted by the pressure gra-
dient and the product of the plasma current and mag-
netic field. These so-called hoop forces can be com-
pensated by an external homogeneous magnetic field 
parallel to the torus axis which interacts with the 
toroidal current and exerts a counteracting force. 

At infinity the magnetic field generated by the cur-
rents flowing in the torus vanishes, so that only the 
homogeneous field is left, for which the notation B, is 
used. 

In dimensional quantities, it holds that 

IP(R) = -\BzR2 + C, (10) 

Let RMAX and RMIN be the largest and lowest value of 
R, respectively, for the plasma edge and 

* = 2 (Rmax — Rmin) » & = \ (^max + ^min) • 

We call E = r/R the inverse aspect ratio. Let 

J = \\j<p(R,z)dRdz (11) 
D 

be the total toroidal current and a, b, x, y, and symbols 
with a hat denote dimensionless quantities. We then put 

R = R ( \ + E X ) , Z = ry, \p = - p 0 R J \ p , 

J 
jv, G = RG, c = — RJ n0a, 

B2=2jn0b. 

Note that J < 0 if Bpo] is going around the magnetic 
axis in the mathematically positive sense. 

The complete flux function consists of the com-
ponent generated by the current flowing in the plasma 
and the component generated by the external field. 
After dropping the hats the dimensionless integral 
equation reads 

iA(x,y) = 0P 1(x,y) + iAext(x,y) (12a) 

= - JJ G(x, x', y, y') j j x ' , y') dx' dy'+ b{l +ex ) 2 + a. 
D 

The solution of (12 a) has to satisfy two conditions. We 
describe the plasma edge with the relation 

<AlrPV = 0 . 

In the interior of the plasma the flux function is 
assumed to be positive. Once and for all, we fix the 
intersection of the plasma edge with the K-axis at the 
coordinates x = + l . This requirement is called the 
subsidiary condition (B): 

(B) 0 (x = 1, y = 0) = ip(x= — 1, y = 0) = 0 . (12b) 

As second condition we normalize the total toroidal 
current to 1, as usual: 

(N) 1 = J J / , ( ' ) • da = | B dl=- (12c) 
D eD J dn R 

1.2. Linear Profile Functions 

The profile functions p' and FI can be given arbi-
trarily to a certain extent. They are chosen linear in ip: 

I ^ = (l-ßp)(«2iP + r1), 

with the abbreviations 

£ = / + (/? P - l ) v , 

Y] = A + ß p V , 

and A = (f - r/) ßP + rj 

and with the poloidal beta 

<P> 

(13a) 

(13 b) 

(13c) 

(13 d) 

(13e) 

ßP = 
<B2

P o . ) / 2 ' 
< . . . ) = J . . . d ip. 

ßp — 0 is the force-free case with vanishing pressure 
gradient and j parallel to B. The term describes 
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the limit of the pressure gradient when approaching 
the plasma edge from the magnetic axis. For ßP + 0 
and non-vanishing £ the pressure gradient is thus dis-
continuous at the plasma edge. Since p > 0 it holds 
that £ > 0. 

/ ' is proportional to the poloidal current density. 
The term (1 — ßP) rj is proportional to the poloidal cur-
rent density at the plasma edge. In the special case 
r\ = 0 it vanishes at the edge, and in the case ßP = 1 it 
vanishes everywhere; the toroidal magnetic field is 
then a vacuum field that decreases as l/R. The param-
eter a2 can be chosen arbitrarily between — oo and an 
upper bound yet to be defined. 

It will be seen that A is fixed in zeroth and first order 
whenever the current profile parameter a is given. We 
then have v for varying the values of the profile func-
tions at the plasma edge ßPE, and (1 — ßP)rj; of course 
we do not have complete freedom in choosing £ and 
rj because they are related to the poloidal beta and the 
current density profile through (13e). 

We thus look for solutions of the integral equation 

iA(x, y) = - | | G(x, y, x', y') jv(x\ y') dx' dy' 

+ b{l + ex)2+a (14a) 

with the toroidal current density 

jv(x, y) = - (1 + ex) ßp{«2 <Mx, y) + X + (ßp- 1) v) 

- ~r~T V y) + * + ßpv) 1 + e x 

and Green's function G, including the normalization 
condition 

with 

1 = -
Ö!A 
8n~ 

dl 
1 + ex ' 

and the subsidiary condition 

«A(1,0) = .A( -1 ,0 ) = 0 

(14b) 

(14c) 

Q2 = ( X - X')2 + (y - y')2 

In tables of mathematical formulae one finds expan-
sions of elliptical integrals for k about 1 [3]: 

E(k) = 1 +\(A- i)(l - k2) + £(A - j f ) (1 - k2)2 

+ 0 ( ( l - / c 2 ) 3 ) , (16a) 

k2) + £(A-l)(l-k2)2 K(k) = A + 
A-1 

(1 

+ 0 ( ( l - f c 2 ) 3 ) (16b) 

with the abbreviation A = In ( 4 / j / l — k2). 
In the context of a two-scale method we regard E 

and In e as two independent quantities. We take In e 
as a constant and expand in e: 

A = In A . + £ ^ + s2 [ - i (x + x')2 + I ( y -y ' ) 2 ] 

+ 0 (e 3 ) . (17) 

We require A up to and including second order and 
therefore have to take the expansion of k2 to fourth 
order. Substitution of (15) and (17) into (16) yields 

E(k) = 1 + e2 i 8 1 
In 

gs 2 

8 x + x' . 
K(k) = In — + e + e 

QE 2 

+ 0(£ 3 ) , 

^ I n — 1 
16 

1 1 
- - ( x + x')2 + - ( y 

QE 

- y ' ) 2 + 0(e3) . 

This gives an expansion for 
G(R, z, R', z') = G(x, y, x', y'): 

Gn = 
1 

2n 
In 2 

QE 

That makes three conditions altogether. These will be 
used to determine the three parameters a, b, and L 

1.3. Expansion 

First the factors of the integrand G(x, y, x', y') and 
jv(x', y') are expanded in the inverse aspect ratio. 

Up to and including fourth order the modulus k2 

yields 

k2=l _Ie2fi2 + l ( x + x') Q2
E

3 

G! = — (x + x') 
471 

In 1 
QE 

G, = 
1 6 TT 

(x + x')2 + (y — y')2 + 

Green's function 

(18a) 

(18b) 

In — + 1 

+ ( y - y ' ) 2 [ l n — - 2 (18c) 

The Taylor series expansion of the toroidal current 
density in s yields the following expressions on ex-
panding the parameter A: 

+ TeQ2[-3(x + x')2 + (y - y')2] e4 + O(£
5) (15) -j90(x, y) = a 2 (x, y) + A0 (19a) 
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2. Satisfaction of the normalization condition 

dl 

~j(pi(x,y) = cc2il/l(x,y) + /.1 (19b) 

+ x{(2ßP- 1) ( a 2 0 o (x , y) + X0) + 2(ßP-\) ßPv], 

+ x(2ßP — l)(a2i/^1(x, + (19c) 

+ x2 (1 - ßP) (a2 0O (x, y) + A0 + ßP v). 

As 0(x, y) in zeroth order will exhibit cylindrical sym-
metry, it is convenient to introduce a polar coordinate 
system (r, 9) with the relations 

x = r cos 9, y = r sin 9, dx dy = r dr d9 . 

This yields 

Q2= r2+ r'2- 2 rr' cos { 9 - 9 ' ) 

6n 1 + er cos 9 ' 

3. Satisfaction of the subsidiary condition 

0(1 ,0) = 0(1, it) = 0 . 

(21b) 

(21c) 

For the plasma edge it holds that 0 (r, 0) = 0. It is 
described as a function r(9, e) of the poloidal angle and 
aspect ratio. To simplify the notation, the e-dependence 
will not always be given explicitly. The subsidiary 
condition (14 c) fixes the edge curve at the intersec-
tions with the R-axis for all orders: 

f(0 = 0) = f(9 = n)=\. (20) 

Altogether then, we expand the following quantities: 

0(e, r, 9) = 0o (r) + e<Mr, 0) + e 2 0 2 ( r , 9) + 0(e3) , 

G(e, r, 9, r\ 9') = G0{r, 9, r', 9') + eGx(r, 9, r', 9') 

+ e2G2(r, 9, r', 9') + 0(s3), 

j9(e, r, 0) = + £7^1 (r, 0) + r, 6) + 0(c3) , 

r(e, 0) = r0+ £^(0) + s2f2(9) + 0(£
3), 

/(fi) = A0+ £/.j + £ 2 / 2 + 0(£3), 

a ( f i ) = a 0 + e^! + e2 a2+ 0(e3) , 

ö(e) = 60+ eby + e2b2+ 0(e3) 

and regard the parameters a, ßP, and v as being arbi-
trary. Here it must always be ensured - especially 
with v - that the orders of the expansion are not 
perturbed, i.e. that v is small compared with 1/e. 

Our mathematical problem thus takes the following 
form: 

1. Solution of the nonlinear integral equation 

2k f(d') 
0(r, 0) = - { j G(r, r', 9, 9') j j r ' , 9') r' dr' d0' 

o o 
+ 6(1 + er cos 9)2+ a , (21a) 

Since the edge function r(e, 9) is one of the unknown 
quantities to be determined, this corresponds to the 
solution of a free-boundary problem. The strength of 
the applied vertical field governs, among other quanti-
ties, the aspect ratio. Since, however, we want an ex-
pansion in e, we have to be able to specify and vary the 
aspect ratio, and not the external field, for example. 
The vertical field will therefore be matched to e and 
not vice versa. Which quantity is specified and which 
one is matched to it in order to satisfy the equilibrium 
condition is of no importance; the two approaches are 
equivalent. 

2. Solution 

2.1. Zeroth Order 

2.1.1. S o l u t i o n of t h e P r o b l e m 

In the case of infinite aspect ratio (e = 0) we have to 
solve the equation 

2 K 1 
<Ao M = H G o (r, 0, r', 9') [a2 0O ('') + '' dr'd9' 

o o 
+ b0+a0 (22 a) 

with due allowance for the normalization condition 
(see annex B) 

(N) 0 o > r ( l ) = - l / 2 7 r (22 b) 

and the subsidiary condition 

(B) <MD = 0 . (22c) 

First we rewrite (22 a): 
2 jt 1 

0 o ( r ) = a 2 } | G0 0o ( r ) r dr' d9' 
o o 

2jt 1 
+ x0 ) J G o r ' d r ' d 0 ' + b0+ ao-o o 

We then use the fact that 0 o ( r ) is angularly indepen-
dent and can therefore be eliminated from the 0'-inte-
gral. The ^'-integration is now carried out [4], a dis-
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tinction being made between the cases r <r' and 
r > r ' : 

2n g 
j G0(r, 9, r', d') d0' = In - - 2 + K0(r, r') 

with 2n 
— In r', r <r', 
— In r, r>r'. 

This then gives us the one-dimensional integral equa-
tion l 
>A0(r) = a 2 j x 0 ( r , r') ^ 0 ( r ' ) r 'dr ' 

\n--2)]ij/0(r')r'dr' (23) + a 

i ^ l n j - 2^ + J X0(r , r') r ' d r ' J + 60 + a 0 . 

tinuous and g(x) a positive continuous function. Let u 
satisfy certain boundary conditions. If K (x, £) is the 
Green's function assumed to exist for L [u] which satis-
fies the boundary conditions, then the integral equation 

with 
g(x) = -\K(x, £)*(£) d£ 

Depending on the sign of a 2 various solutions are now 
obtained. We distinguish three cases: 

a 2 > 0, a real 

a 2 < 0, a imaginary, 

a 2 = 0 . 

In addition, a2 is assumed to have an upper bound. 
The existence of such a bound is deduced by the fol-
lowing reasoning: 

If the flux function has extrema in the interior of the 
plasma which are not O-points, any perturbation 
occurring can lead to the formation of so-called mag-
netic islands, which alter the topology of the flux func-
tion. The flux surfaces are then no longer simply 
nested. Various islands can interact and destroy the 
magnetic surfaces. The magnetic field lines then 
occupy regions in which there is enhanced radial 
transport of charged particles, which very severely 
impairs the magnetic confinement [5]. 

In order to rule out such effects from the outset, it 
is sufficient to assume the flux function in zeroth order 
to be monotonic. What influence this requirement has 
on the current profile parameter a will be seen as soon 
as i^o(r) is known. 

We now consider the following theorem on differen-
tial and integral equations: 

Let the differential equation 

L[u{xj\ + XQU{X) = x(x) 

be given, where L [u] is a linear differential operator of 
second order, X a parameter, x(*) a piecewise con-

is equivalent to the above differential equation. In 
other words, every solution of the differential equation 
is also a solution of the integral equation and vice 
versa. In particular, the function 

M(x) = j x ( x , 

satisfies the differential equation 

L[u] = - (p(x) 

with the boundary conditions. Furthermore, if L [u] is 
self-adjoint, the kernel of the integral equation K{x, £) 
is symmetric with respect to interchange of parameter 
and argument: K(x, £) = K(£, x) [6]. 

Obviously, we can transform an integral equation 
of type (23) into an equivalent differential equation 
plus the appropriate boundary condition by using a 
suitable differential operator L. 

We now use the fact that the Green's function of the 
differential expression belonging to the zeroth order 
Bessel function 

ToM = rU,rr + U,r 

for the interval 0 < r < 1 with the boundary conditions 
u(l) = 0, w(0) finite is the previously determined kernel 
K0(r,r')[T[. 

This gives us the differential operator relating to our 
problem. It is the so-called Bessel differential operator 
L 0 , and we now apply it to the integral equation. This 
yields the zeroth-order Bessel differential equation 

r2iAo,rr + riAo,r + a2'-2«/'o = - V 2 (24a) 

together with the boundary conditions 

iAo(0) finite 

and i 

>A0(l) = a 2 ( l n | - 2 ) } M r ' ) / dr' 

(24 b) + — ( I" — 2 ) + bo+a0-

The general homogeneous solutions are the zeroth-
order Bessel and Neumann (often called Weber) func-



1136 D. Lortz and W. Haimerl • Axisymmetric Magnetohydrodynamic Equilibria without a Wall 

tions of the first kind. The Neumann functions are not 
bounded in the origin, which leaves just the zeroth-
order Bessel function of the first kind as homogeneous 
solution: 

<Aaoh(r) = c 0 J 0 ( a r ) . 

A special inhomogeneous solution is immediately ob-
tained with 

or 

The general inhomogeneous solution is the sum of the 
general homogeneous and the special inhomogeneous 
solution: 

<Ao(r) = c0J0(ar)--j. (25) 

To be a solution of the integral equation, this function 
has to satisfy the boundary condition (24 b). In addi-
tion, we impose the requirements of the normalization 
and subsidiary conditions (22 b), (22 c). 

To keep the calculation effort small, first we con-
sider the normalization condition (B9). From it we 
can calculate c 0 : 

1 = -2nc0J0 r(cc). 

With J0 r(ar) = a J 0 a r(a r) = — a J x (ar) one obtains 

c0 = , (26) 
27ta Jx(a) 

Through the subsidiary condition 0O( 1) = 0 we can 
express A0 as a function of a: 

An = 
aJ 0 (a) 

0 27t Ji(a) ' 
(27) 

1 
which for small a yields X0 = — (l — | a 2 + 0(a4)). 

Tt 0 

As \J/0(r) is now known for positive a2, we can inves-
tigate the circumstances under which the flux function 
is monotonic. 

For this purpose the argument of the zeroth-order 
Bessel function must be smaller than the value at 
which the first minimum occur for r = 1. Because of the 
relation J 0 r(ar) = — aJ x ( a r ) this limit is the first zero 
j n of the first-order Bessel function: 

a 2 < ; 2
1 . 

Subject to this constraint, the monotonicity of \j/0(r) in 
the interior of the plasma is ensured. 

We now insert the results for c 0 and A0 in the 
boundary condition (24 b) and obtain a relation be-
tween the logarithm of the aspect ratio and the con-
stants a0 and b0: 

In — — 2 = — 2 n{a0 + b0). (28) 

In addition, the original integral equation (23) simpli-
fies to 

l i 
«Mr) = a 2 f K0(r, r') 0o(r ' ) r ' d r ' + J K0(r, r') r ' d r ' . 

o o (29) 
We now consider the case a2 < 0. We assume a to be 
purely imaginary and denote the magnitude of a as 
| a |. The solutions for a2 < 0 are obtained through the 
relation 

Jn(is) = rin(s) 

from that for a2 > 0: 

a = i | a | and a 2 = — | a | 2 < 0 . 

(30) 

( 3 1 ) 

Owing to the monotonicity of / 0 (ar ) there is no bound 
for negative a 2 ; a2 can be taken to — oo without prob-
lems. 

Figure 1 shows / 0 as a function of ± | a |. 
In the case a = 0 the integral equation (23) reduces 

to 
An 1 / 8 \ 

M ) = - f (1 ~r2) + y ^o ( I " - - 2 J + b0+ a0 . (31) 

Fig. 1. as function of ± | a |. The pole is located at a . = j l l . 
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The normalization condition (B9) then yields 

1 

Current reversal can occur at 

— > n (32) 

and from the subsidiary condition i/^0(l) = 0 we again 
obtain the relation 

I n 2 = — 2 n ( a 0 + b 0 ) . 
£ 

The solution for vanishing a is thus 

*M r) = 7—(! - r2) • 471 

(33) 

(34) 

The results obtained for a2 > 0 and a2 < 0 continuously 
tend to that in (34). 

2.1.2. V a r i o u s C u r r e n t D e n s i t y P r o f i l e s 

As we have seen, the solution for the flux function 
tAo(r) is continuously dependent on the parameter a2, 
and a2 can take any value in the interval ] — oo;y'2J. 
Particularly interesting is the effect of a2 on the cur-
rent density distribution in the plasma. The introduc-
tion of this parameter makes it possible to describe 
many different current density profiles and take phe-
nomena such as current reversal and surface current 
into consideration. The current density function in 
leading order - see (17 a) - is 

- ;„o( r ) = a2>M'-) + V (35) 

For positive a2 we can substitute (27) for A0 to obtain 

j < p o ( r ) = -

c t J 0 { c i r ) 

2 n J l ( c i ) 
(36) 

Depending on the choice of a2, various current density 
profiles are obtained: If 0 < a2 < j l , , the current den-
sity decreases monotonically as r increases; when the 
right-hand equality sign is valid, it vanishes at the 
plasma edge. If a2 > j h , the current density changes 
sign at r = ru= ;01/oc. For r > ru the current flows in the 
opposite direction to that on the magnetic axis; the 
current reverses. Owing to the constraint a 2 < j 2

1 , 
which had to be imposed to ensure monotonic i j / 0 { r ) , 

and which also leads to monotonicity of the current 
density in the case of linear profile functions, there 
exists a minimum r for current reversal: 

r > r . 

r • = 
J 01 
h i 

2,405 
3,832 

£ 0,628 

at the earliest. The plasma edge is located at r = l . 
If a tends to zero, the current density profile be-

comes increasingly flat, finally becoming constant 
throughout the plasma for a = 0: 

j < p o ( r ) = ~ 
1 

(37) 

In the case a2 < 0 the current density satisfies the 
equation 

| a | / 0 ( | a | r ) 
j v o ( r ) = -

2 * / i ( | a | ) 
(38) 

J0(ar) has no zero and increases monotonically. The 
farer a2 is from zero, the more strongly concentrated 
is the current at the plasma edge. For large arguments 
the following asymptotic formula is valid indepen-
dently of the order n: 

/ „ ( * ) = ( 2 t t s ) -1/2 

and so the current density can be expressed as 

j v o ( r ) 2n 
1/2 -|a|(r-l) (39) 

For r g ]0; 1[ the exponent is negative and the current 
density vanishes when a grows beyond all limits. 

In the limiting case r = 0 the exponential function 
dominates the pole of r - 1 / 2 and jv0 likewise vanishes. 

Finally, at the plasma edge, the exponent becomes 
zero and the current density goes linearly in | a | to 
infinity: 

I oc j 
Ä>o(1) M-oo' ~ 

In the limiting case a2 - • —00 the entire current is 
concentrated in an infinitely thin region at the plasma 
edge: The normalization of the total current to one is 
retained. 

Figure 2 shows — j j r ) for a few values of a. 

2 . 2 . F i r s t O r d e r 

2.2.1. T h e A n s a t z 

Taking into account that the upper limit of the 
r'-integration is a function of e and 9', one obtains for 
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a = 10i 
According to (42) this means that the correction of the 
edge curve ^ ( 0 ) vanishes in first order: 

M 0 ) e e O . (44) 

Deviation of the plasma edge from the circular cross-
section is thus only to be expected as of second order. 
The calculation yields the two integral equations 

(45 a) 

Fig. 2. Toroidal current density profiles for typical values of a. 
r = 0: magnetic axis, r = 1: plasma edge. 

the first order the integral equation 
2 n 

iMr , 0) = - f MÖ') G0(r, 0,1, 0') jv0( 1, 0') d9' 
o 
2jt 1 

- | \G0(r,9,r',9')j(pl(r',9')r'dr'd9' 
o o 
2n 1 

- J \Gl(r,9,r',9')j<p0(r',9')r'dr'd9' 
o o 

+ ax + b, + 2b0 r cos 9 . (40) 

<Aio(r) = a 2 J K0{r, r') 4>l0(r') r' dr' 

+ a 2 0 l o ( r ' ) r' dr' 

+ ~2 ( l n 1 ~ 2 ) + ^1 J K° r * d r + U1 + b l ' 

0 1 1 ( r ) = a 2 f x i ( r , r ' ) 0 n ( r ' ) r 'dr ' 

+ 2 ( i 9 P - | ) a 2 j x i ( r , r') 0o(r ' ) r ' 2 dr ' 

+ ^ 2 v / ? 2 + 2 ( A 0 - v ) ßp--j-j\Kl(r, r') r ' 2 dr ' 

+ y ^ l n | - l ^ r f 0 o ( r ' ) r ' d r ' 

a , 
+ y r j K0(r, r') 0 o ( r ' ) r 'dr ' (45 b) 

+ ^ - r j K 0 ( r , r') r'dr'+ 2 b0 + ln r. 

We have used the abbreviation We substitute in the integrand the results of the expan-
sion of Green's function (18) and the current density 
(19) and do the ^'-integration except for the term con-
taining \J/l. Kl(r,r') = 

The inhomogeneity splits into a 0-independent 
component, terms having a factor cos 9, and an ex-
pression with rx(0), whose 0-dependence is uncertain, which corresponds to 
The structure of the inhomogeneity suggests for 
0 ! (r, 0) the ansatz 

1 r 
T — ' r ' 2 r 

1 r' 
2 7 ' 

r > r', 

0i ( r , 0) = <Aio(r) + •An (r) c o s 0 . ( 4 1 ) with 

1 f 1 
— In — cos n0 'd0 ' = K„(r, r') cos n9 
2n J

0 e 

It then follows from the expansion of the edge curve 
(A9) that ^ (0 ) also takes the form of (41): Kn(r, r') = 

r <r' 

2" 

r\(0) = -
<M1 ,9) 01 O(1) 0 n ( l ) 

•Ao.r(l) <Ao,r(D ^O.rd) 

= r 1 0 + cos 9 . 

The subsidiary condition (21 c) yields 

0 1 O ( l) = 0 n ( l ) = O. 

cos 

n = 1, 2, 3 , . . . 

7 ) > 

The solutions of these integral equations have to satisfy 
the normalization and subsidiary conditions 

(N) «A10,r(i) = o, 

(43) (B) 0 l o ( l ) = <Aii(l) = O. 

(45 c) 

(45 d) 
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Zeroth order Investigation of the 0-independent component shows 
that i j / l 0 ( r ) vanishes identically for all a 2 e ] — o o ; j 2 J : 

* 1 0 ( r ) s 0 . 

In addition it holds that 

al + bl = 0, = 0 . 

(46) 

(47) 

Analysis of the ^-dependent component yields the 
parameter b0, the strength of the dimensionless homo-
geneous vertical field in leading order, and a0: 

1 

(48 a) 

Plasma edge 

Ui = const. 

b0 = ~— ( In 1 + A 
O 71 

+ j _ t c a o _ [ _ v ß 2 + v ß p + i h h 

1 
a n = — 

8tt 

1 -71/1 

3 In 7 — ßp 
£ 

Vacuum 

First order 

U> = const 

a ~ [~vßp+ vßp + i ^o] • (48b) 

We now have the complete solution of the flux func-
tion up to and including first order: 

with 

and 

<Mr, e) = + 6) + 0(e2) 

\l/0(r) = c0J0(<xr 
or 

>Ai(r, 0) = ^ u ( r ) cos 0 , 

(49 a) 

(49 b) 

(49 c) 

Shafranov shift 

Fig. 3. Shafranov shift. Shown are the curves i = const in 
zeroth and first order. The plasma edge remains unperturbed. 

2.2.2. S h a f r a n o v S h i f t a n d C o n t o u r L i n e s 

The position of the magnetic axis of the plasma is of 
physical interest. It is characterized by the vanishing 
of the gradient of the flux function: 

V.A(rs,0s) = 0 . (50) 

"All(r) = 1 - ^ 2 v r + 
471 Cr, v 

M a r ) j # 

4 71 Cf> v 

The extremum of the flux function is on the x-axis. We 
make the ansatz 

x s = x s 0 + £ x s l + O ( e 2 ) (51) 

+ y rJ0(ar) -
7IC0A0 J^ccr) 

For a - ^ 0 (49 d) reduces to 

J1(ar)f ßP in this way we expand (49 a) at the location x = x s , 
y = 0 and obtain in zeroth order 

(49d) 0 = c0JQ X(<x x s 0 ) , 

which, owing to a 2 < j h , is equivalent to 

xsO = 0 . (52) 

(r — r 3 ) . The first order arranged in powers of ßP, yields 

1 4v 
xsl = — I n 

(X Cnor ßl The results of the flux function in first order (49) and 
the homogeneous vertical field (48 a) were already 
published in 1963 by Shafranov [9], Unlike Shafranov's 
study, the present paper uses an integral equation + 
method and evaluates to second order. In principle, 
however, this expansion can be taken self-consistently For a 2 > 0 and positive pressure it is then possible to 

1 4V / 1 VI 1 71 An 
W 2 ( 71 2 P + 2 • 53) 2 a \ c0a /J a 

to any order. show positive definiteness of x s l . 



1152 D. Lortz and W. Haimerl • Axisymmetric Magnetohydrodynamic Equilibria without a Wall 1140 

With negative a2 the requirement of positive pres-
sure is no longer sufficient for positive Shafranov shift. 
Only when it has been assumed that the pressure in-
creases monotonically in 0 from the edge to the mag-
netic axis does the Shafranov shift become positive. 
For details see Annex C. 

In order to see how the flux function behaves in the 
interior of the plasma, we consider the contour lines 
ip(r,9) = c = const. 

As shown in Annex C, the contour lines are non-
concentric circles. The plasma edge has the origin as 
its centre. The farther the circles are away from the 
edge, the smaller they become; at the same time, how-
ever, the shift of the centre of the circle increases. 

2.2.3. F o r m of t h e S e p a r a t r i x 

Knowledge of the strength of the homogeneous ver-
tical field provides qualitative data on the flux func-
tion in vacuum. Attention can be restricted to its be-
haviour in the immediate vicinity of the torus axis. 
That is where the shape of the separatrix is deter-
mined. The intersection of a magnetic surface with a 
poloidal plane generates a curve which is called a 
separatrix when at least one so-called X-point exists 
on it. At the Z-point the poloidal magnetic field van-
ishes and, consequently, the gradient of the flux func-
tion as well: 

ViJ/(R,z) = 0. (54) 

In principle, two kinds of separatrices are conceivable 
in our configuration. The intersections with a poloidal 
surface enclose the plasma either in a D-shape or in 
the form of a (drop-shaped) loop. The various geome-
tries are sketched in Figs. 4 and 5. 

In order to decide now what kind of separatrix is 
present, it is sufficient to look at the flux function on 
the R-axis (z = 0) for small R. In the drop-shaped case 
there is an X-point between the magnetic axis (itself an 
O-point) and the torus axis, i.e. in this K-interval there 
is a minimum of i//(R, 0). For small R, dt/t/dR is then 
negative, in the D-shaped case it is positive. 

In order to obtain an expression for the flux func-
tion in the immediate vicinity of the torus axis, we 
think of the plasma cross-section as being concen-
trated at the point (1,0). One then has 

ip (R, z) = G (R, 1, z, 0) + b R2 + a , 

V ( R ) 

b) 

0 R 1 

Fig. 5. Flux functions (qualitative) for D- and drop-shaped 
separatrices. Torus axis at R = 0, plasma at R = 1. 
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and the module of the elliptic integrals in G(R,z,R',z') is 
4 R 

(1+R) 2 ' 

- J \G2(r, 9, r',0');„o(r',0') r'dr 'd0' 
o o 
2n 1 

- J \Gl(r,e,r',e')jq>1(r',e,)r'dr'de' 
where R = 1 + ex. 

We take into account the fact that we normalized + a2 + b2 + 2b1r cos 9 + b0r2 cos2 9. (56a) 

the total current to minus one, and expand the elliptic x h e s o lut ion has to satisfy the normalization con-
integrals for small R. This then yields dition (B12) 

> + i ) « 2 + a - (55) ^ 0 , , ( 1 ) - 2 k ^ 2 0 ( 1 ) = 1 ( ^ , ( 1 ) ( 5 6 b ) 

a is always negative, and we obtain a minimum (X- and (he subsidiary condition 

point) for the case b < —1/4. The separatrix is then 
drop-shaped. If b > —1/4, it is D-shaped. 

2.3. Second Order 

2.3.1. T h e A n s a t z 

We now consider the second order of the integral 
equations (21): 

2* tm 
<AM) = - J j G( r , r ' , 0 , 0 ' ) ; „ ( r ' , 0 ' ) r ' d r ' d0 ' 

o o 

+ b{ 1 + er cos d)2+ a . 

According to the results in first order one has In 
«A2(r, 0) = - J r2(0') G0(r, 0,1, 6') jv0( 1, 0') dO' 

o 
2n 1 

- f \G0(r,9,r',9')j(p2(r',9')r'dr'd9' 

(B) iA 2 ( l , 0 ) = ^ 2 ( l , 7r ) = 0 . 

According to (A l l ) and (B9) one has 

<Ao,r ( l ) 

(56 c) 

(57) 

so that the first term in (56 a) must be regarded as 
homogeneous. We substitute in the integrand the re-
sults of the expansion of the current density (19) and 
Green's function and can then do the ^'-integration 
except for the term containing il/2(r, 6). 

We use the abbreviation 

K2(r, r') = -
7 ) ' 

r 

V r 
r >r'. 

It is found that the inhomogeneity can be completely decomposed into a cos 2 0-dependent, a cos 0-dependent, 
and a 0-independent component. By analogy with the discussion in first order, we make the ansatz 

2 0 2 x (r) cos 9 + \j/22 (r) cos 2 6 (58) 

This is put into the integral equation (56a), and in this way we get three defining equations for \J/20{r), iA21(r), 
and il/22(r): 

1A20(r) = a 2 j ( in * - 2 + K0(r, r ')) ^ 2 0 ( r ' ) r' dr' + 2 n /l0 ( in * - 2 ^ 2 0 ( 1 ) + A2 j ( in | - 2 + K0(r, r>)J r' dr' 

1) a 2 r' ^ x (r') + (1 -ßP) (a2 ^ 0(r ' ) + + ßP v) r'2] 

(r2 + r'2) 2 In - + 1 + 2 K0 (r, r') - - r r' K x (r, r') + J ( a 2 ^ 0 ( r ' ) + /t0) 

+ j j {a2 <Ai 1 (r') + r' [(2 ßp - 1 ) (a2 ij,0 (r') + A0) + 2ßP(ßP - 1 ) v]} 

• | ( l n I - 1 ̂ r'+r'K0(r,r') + rK1 (r, r')J r' dr' + a 2 + b2 + y r2 , 

In 2 + X 
£ 

0(r, r')J r' dr' 

r' dr' 

(59 a) 
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0 2 1 (r) = a 2 f Xi(r , r') 0 2 1 (r') r' dr' + ti A0 0 2 1 (1) r + 2b, r, 

and 

0 2 2 ( r ) = a 2 X2(r , r') 0 2 2 ( r ' ) r ' d r ' + y A0 0 2 2 ( l ) r 2 

(59 b) 

+ y J K j f c O [(2/?p— 1) a V 0 u ( r ' ) + (1 - 0 P ) (a 2 0 o ( r ' ) + A 0 + /?Pv)r'2] r' dr' 

+ J (a2 W ' ) + A0) - ( in | - r2 - r2 X0(r, r') + 2 r r'KJr, / ) - r'2 X2(r, r') r' dr' (59 c) 

1 b 
+ — { {a2 "Au ( r ) + r'[(2ßp — l ) (« 2 0o( r ) + ^o) + 2ßp(ßp — 1) v]} { r X J r , r') + r 'X 2 ( r , r')} r 'dr ' + ^ r 2 . 

2.3.2. T h e U n i q u e S o l v a b i l i t y 
of t h e I n h o m o g e n e o u s P r o b l e m 

Before we set about solving the inhomogeneous in-
tegral equations (59) for 0 2 ( r , 0), let us see what re-
quirements are imposed on the solutions by the nor-
malization condition and the subsidiary condition, or 
whether these requirements can be met at all. First we 
set out all the conditions: (60a) 

(N) 0 2 O > r ( l ) - 2 nX0 02 O(1) = j (01 1 > r( l) - l A o , r ( l ) )> 

(B) 02 O(1) + 0 2 1 (1 ) + 0 2 2 (1) = O for 0 = 0, (60b) 

(B) 0 2 O ( 1 ) - 0 2 I ( 1 ) + 0 2 2 ( D = O for ö = 7t. (60c) 

These are three linear equations for our four un-
knowns still occurring in second order, / 2 , a2, b2, 
and b 

b0 could not be calculated in zeroth order but only 
as of first order, and so it is expected that bn_l gener-
ally cannot be calculated until n-th order. The reason 
is that in n-th order the subsidiary condition is of the 
form 

an + bn + 2bn_1 =... , 

a„ + bn- 2 b „ _ 1 = . . . . 

The determinant of the solution vector (an, bn_ x) does 
not vanish, and we remove bn from the set of un-
knowns that can be determined in n-th order, since it 
represents a result of the next-higher order. We are 
then left with a system of three equations for three 
unknowns which can be transformed as follows: 

(N) 0 2 O . r ( l ) - 27 t ; . o 0 2 o ( l ) = j (0 1 1 > r( l ) - 0o , r( l)) , 
( 6 1 a ) 

( B J 02 O(1) + 0 2 2 (1) = O, (61b) 

As i//20(r) depends on A2 and a2, 0 2 1 ( r ) depends only 
on b! and 0 2 2 ( r ) is completely determined, we have 
the following system of linear equations in matrix rep-
resentation: 

(62) 

Here we are not at all interested in the explicit solution 
vector; rather it is sufficient for us to show that a 
unique solution exists, i.e. the determinant does not 
vanish. In the first part of Annex D it is shown that X2, 
a2, and b, can always be chosen such that they satisfy 
all conditions imposed on 0 2 ( r , 0). 

In considering the flux function in second order we 
shall see that it is not necessary for our purpose to 
know 0 2 O , 0 2 1 , and 0 2 2 . 

Analysis of 0 l o ( r ) yields 

ij/21(r) = 0, b,= 0 . (63) 

The component of 0 2 ( r , 0) that varies as cos 0 thus 
vanishes identically, and the component for 02(r , 0) 
simplifies to 

0 2 ( r , 0) = 0 2 o ( r ) + 0 2 2 ( r ) C O S 2 0 

2.3.3. T h e E d g e C u r v e 

(64) 

(B2) 0 2 i (1) = 0 . (61c) 

We are now interested in the shape of the plasma 
edge. As the edge perturbation vanishes in first order, 
the edge curve is described by ^ ^ 

™ 1 2 M l ? ) 1 2 ^ 2 0 ( 1 ) + 0 2 2 ( 1 ) cos 2 0 r(9) = 1 — £ = 1 — E . 
< A o , , ( l ) <Ao,r(l) 
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The edge curve in second order is an ellipse whose 
axes coincide with the coordinate axes. 

The next question to be asked is what the ratio of 
the two half-axes HR = b/a = b is. It is exactly equiva-
lent to the distance between the intersection of the 
edge curve with the y - a x i s and the origin of the coordi-
nate system: 

Owing to the subsidiary condition (61 b) this reduces to 

H R = \ + 2 e 2 = l - 4 7 t e 2 0 2 2 ( l ) . (66) 
<Ao.r(l) 

We distinguish three cases: 

1. 2(1) < 0 ellipse with vertical major axis, 
2. 02 2(1) = 0 circle, 
3. 022(1) > 0 ellipse with horizontal major axis. 

To determine the parameters of the ellipse, one need 
not calculate the whole function 0 2 ( r , 0); it is sufficient 
to know 022(1)-

2.3.4. H a l f - A x i s R a t i o N e a r t h e M a g n e t i c A x i s 

By analogy with first order, the contour lines for 
c 4= 0 are expected to be ellipses as well, like the edge 
curve, but with variable aspect ratio. We are particu-
larly interested in the readily accessible half-axis ratio 
HA in the immediate vicinity of the magnetic axis. 

Since the maximum of 0 is only at a distance 0(e) 
from the origin, the vicinity of the maximum of 0 can 
be described by a Taylor expansion in r (neglecting 
terms of 0( r 3 ) ~ 0(e3)): 

0 = 0o( r) + S0u( r ) cos 0 

+ £2[02o(r) + iP22(r) cos 20] + 0(e3) (67) 

= <Aoo + <Ao2 r 2 + £ <A 111 r cos 0 

+ £ 2 [ 0 2 0 0 + <A202 r2 + 0 2 2 2 r2 cos 20] + 0(e3) 

= 000 + *Po2(x2 + y2) + ß<Al 11 * 

+ £3 [0200 + 1A202 (x2 + y2)+<A222 (x2 - y2)]+o (e3). 

Now, the maximum of 0 is situated at y = y 0 = 0 and 

X = XQ — - \ e 0 n l [002+ e2(02O2 + 0222)]"1 

e<Am 
2 0 c 

+ 0 ( e ) (68) 

Thus, the contour lines of 0 are, in leading order, 
described by 

(X-X o ) 2 [0o2+ £2(02O2 + <A222)] 

+ y2 [ 0 0 2 + £ 2 O A 2 0 2 - 1 A 2 2 2 ) ] = const , (69) 

which are ellipses with half-axis ratio 

[0O2+£2(02O2+</'222)]1/2 
HA = 

[0O2+£2(02O2-«A222)]1/2 
(70) 

= ! + £ 2 + 0 ( £ 4 ) = 1 + e2 *22,rr(0) + ^ 

•Ac •Ao.rr(O) 

So, for the half-axis ratio on the magnetic axis we do 
not need the whole function 0 2 ( r , 0) but only the com-
ponent 0 2 2 , r r ( O ) . 

2.3.5. R e s u l t s a n d S p e c i a l C a s e s 

The integral equation (59 c) for 0 2 2 ( r ) is solved in 
the second half of Annex D. This enables us to discuss 
the form of the flux function qualitatively. In particu-
lar, we shall give the results for the half-axis ratios of 
the flux function at the plasma edge HR and on the 
magnetic axis HA. All numerical results given are for 
e = 0.1. For HR we obtained 

HR = l - 4 7 i e 2 0 2 2 ( l ) , (71a) 

and now we know 02 2(1): 

J 7T 
< A 2 2 ( 1 ) = T Ißr c 2 2 3 + ßp C 2 2 2 + ßpc221 + c 2 2 0 ] nc0ct 

>v ^ v 
+ 2 r L 

+ ft I T T Q + n A o) - 4 (2 + 1 o 77: a 

r n k l 1 1 3 ^ 
16 a 

has likewise been calcuated: 

H x = 1 + e 2 *22,rr(<>) 
>Ao,rr(0) 

(71b) 

(72a) 

with 

022,rr= -J (C223 ß3 + C222 ß2+C221ß + C220) 

( 4 v \ „, / c n a 2 5vs 
+ ß {2n C0v + — j j + ß ( — ^ 7TC0 V - J -
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, n( nc0A0 c0(X2 v \ 

Let us now discuss these results in the case of two 
special profiles. On the one hand, we shall assume that 
both the toroidal and poloidal current densities and 
the pressure gradient at the plasma edge vanish. This 
corresponds to the following choices of parameters: 

a 2 = j o i , (73 a) 

v = 0 . (73 b) 

Consequently, both A0 and £ and q vanish according 
to (13) and (27). For the edge ellipses we then obtain 

HR = 1 + 4 (4 - oc2) ß2 + i (a2 - 8) ßP 
or 2 6 

8 ) 
+ 3 In - - 4 \ . (74) 

The term in braces in (74) is positive for small ßP down 
to its zero at about ßP = 3. The edge curve in each case 
is an ellipse with vertical major half-axis. HR is given 
for some typical values of the poloidal beta and for 
£ = 0.1: 

ßP Hr 

0 1.016 
0.5 1.015 
1 1.014 
1.5 1.011 

At ßP = 3 the edge curve is a circle, for higher ßp an 
ellipse with horizontal major axis. 

The half-axis ratio on the magnetic axis is given by 
the expression 

, f ( \ oc2\ 7 5 1 

+ H 3 i n H l - ( 7 5 ) 

For £ = 0.1 the following values are calculated: 

ßP Ha 

0 1.012 
0.5 1.009 
1 1.003 
1.5 0.996 

Next we want to see what results are obtained for a 
flat toroidal current profile. This corresponds to the 
choice a = 0. 

We calculate 

This corresponds to the well-known result [10]. How-
ever, for v ( l - 0 p ) * O formula (76) contradicts the re-
sult in [11] and [12]. 

HR is independent of the poloidal beta and has (for 
£ = 0.1) the value 

HR = 1.022. 

For the half-axis ratio on the magnetic axis we obtain 

+ { ( 3 I n f - 4 ) } . ,77) 

For £ = 0.1 and v = 0 the following values are calulated: 

ßP Ha 

0 1.023 
0.5 1.022 
1 1.020 
1.5 0.019 

Summary 

We have considered an axisymmetric M H D equi-
librium with an external homogeneous magnetic field 
which is parallel to the torus axis (axis of symmetry). 
The magnetic flux function of the equilibrium is de-
scribed by an integral equation representing a nonlin-
ear free-boundary problem. This is solved by an ex-
pansion with respect to the inverse aspect ratio e. In 
keeping with a two-scale method the quantities £ and 
In £ are considered as independent. Linear profile 
functions containing four parameters are used. 

In leading order (e°) the flux function does not de-
pend on the poloidal angle, so that the level lines are 
concentric circles. In first order in e the plasma surface 
is unchanged and the level lines are non-concentric 
circles (Shafranov-Shift). In second order it is found 
that the plasma surface and the level lines are ellipti-
cally deformed. In order to satisfy the solubility condi-
tions, only three of the four profile parameters can be 
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and the second order finally yields 

' 1 ( 0 ) • A o . r r ( l ) + 2 r x ^ , ( 1 , 9) + 2 « A 2 ( 1 , 0) 

chosen independently. This latter fact has not been 
correctly treated in references [11] and [12], with the 
consequence that the formulae describing the elliptic-
ity in second order are different. In a forthcoming 
paper it will be shown how the profile parameters 
have to be chosen to make the configuration stable. 

Annex A. Expansion of the Edge Curve 

The edge of the plasma is described by the condition 

iA(r,0) = O. (A.l) 

The set of all points (r, 9), satisfying this criterion is 
called the edge curve and is denoted by r(0). The edge 
curve is thus defined by the relation 

«A(r(0),0) = 0 . (A.2) 

In order to see what effect the aspect ratio has on the 
shape of this curve, we expand iA(r, 9) and r(9) in e: 

<A(r, 9) = «Mr) + (r, 0) + e2i/s2(r, 9) + 0 (e 3 ) , (A.3) 

t(6) = to(0) + e M 0 ) + e 2 M # ) + 0(e3). (A.4) 

Substituting in (A.2) now yields 

0 = iJ/o(ro+-Ef1 + £2f2+ ...) 

+ eiJ/1{f0+efl + E2r2+...,9) 

+ e 2 ip 2 {r 0 + Eft + £2r2 + ...,9) + ... . (A.5) 

Expanding this according to Taylor, we obtain 

0 = iAo(^o) + e Pi <Ao,rCo) + >Ai 

+ e2 [r2 <Ao,r(>o) + ^o.rrtfo) + <Al,r(^o) 

+ <A2(^o )] + 0(E3). (A.6) 

From zeroth order of this equation 

0 = M * o ) (A.7) 

it is seen that r0 - since ij/0 is independent of the 
poloidal angle - will not be a function of 9. The plasma 
boundary condition requires that i//(l, 0) = i^(l, 7r) = 0, 
thus fixing the value of r 0 : 

= 1 . (A.8) 

In leading order the plasma edge is thus a circle with 
radius 1. 

The first order gives 

M ö ) = 
< M M ) 
>Ao,r( l ) 

(A.9) 

t2(0) = -
2 « A o , r ( D (A. 10) 

The solution of the integral equation for i ( r , 9) in the 
main body of the text yields the result that ij/1(l,9) 
and hence also the edge perturbation rx (0) vanishes in 
first order for all 9:1/^(1, 0) = O. The expression for the 
edge curve thus reduces to 

r(9) = 1 - £2 <Aa(l ,0) (A.l 1) 

Only as of second order does the plasma edge thus 
deviate from the circular shape, insofar as i//2(l, 9) is 
non-zero. 

Annex B. Expansion of the Normalization Condition 

The normalization condition (14 b) is 

0iA 1 
1 

Cn R 
d / (B.l) 

To write the expansion, we have to expand dij/fdn, 1 /R 
and dl up to and including second order in the inverse 
aspect ratio. First we make use of the relation 

SiA 
= n • ViA = 

ViA 

IWl = — I ViA I (B.2) 

The magnitude of the gradient is calculated in the 
variables r and 9: 

r 
(B.3) 

with 

f 2 r = 'Ao,r + 2e>Ao,r'Al,r + e2[2«Ao.r<A2>r + '/'f,r] + 0(e3) 

and <Afe = £2'Ai,0 • 

Expanding the root of (B.3) to second order, we obtain 

Ke(r, 9) 
— £ •A2.r(r, e) + 

2^2 <Ao,r(r) J 
. (B.4) 

It must now be taken into account that for the nor-
malization condition we need the integrand at the 
location ip = const. We therefore convert | ViJ/ (r, 9) \ to 
| ViA (<A, 9) | and take iA at the plasma edge. One then 
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has r(0) = 1 + e 2 r 2 (0) and 

| V 0 ( 0 = O, 0) = - 0 o , r ( l ) - £ 0 1 > r ( l , 0 ) 

- £ 2 [ 0 2 , r ( l , 0 ) + r2(0) 0 o > r r( l ) ] 

and 

(B.5) 
t2{0) = M M ) 

•Ao.r(l) 
(B.ll) 

one obtains 

if use is made of the fact that \J/1 g{l) = 0. 
In the line element dl2 = dr2 + r2 d02 along a curve 

with 0 = const we express dr(0, 0) as 

dr dr dr 
d r(0, fl) = — d0 = — d 0 , 

00 00 00 

from which we arrive at the expression 

O = 2 7 t 0 2 O , r ( l ) - 2 7 r 0 2 O ( l ) 1 + * 0 . r r ( l ) 

dl = r 1 + 
1 / ö r y Y ' 

00/ 
d0 . (B.6) 

<A0,r(D 

+ 7 t 0 O j r ( l ) - 7 t 0 1 1 > r ( l ) . 

Because of (24a) the term in parentheses is 2nX 0 , and 
so the normalization condition in second order re-
duces to 

0 2 O , r ( l ) - 2 7 l X 0 020 (1) = \ (<All,r(l)-<Ao,r(l)) • (B.12) 

As the second term in the radicand is of order £4, the . r n - - c .. f , ' Annex C. Definiteness ol the Shalranov Shift 
line element at the plasma edge up to second order is 

d/ = r d 0 = (l + s2 r2 (0)) d0 . (B.7) For the following discussion of definiteness it is 
more convenient to choose the variables A0 and 

The last factor of (B.l) in the integrand is finally calcu- Using (13 c) we obtain 
lated as 

1 1 
R 1 + £ x 

= 1 - ex + s 2 x 2 + 0(s3) 

1 4 71 , 
T + 1 - 2 2 or 

J,( a) 
K - ^ o ) ßP + 

(CA) 
1 — 71 /in 

= 1 - er cos 0 + £ 2r 2 cos 2 0 + O(e3). 

At the plasma edge this becomes 

1 
— = 1 — £ c o s 0 + £ 2 c o s 2 

Analysis of the /^-independent term shows that it is 
positive definite for all a2 e ] — oo; j 2 ! [ . 

The /^-dependent component can simply be esti-
mated. As the scalar pressure cannot take negative 

(B.8) values, according to (13 a) it holds that 

Substituting all this in the normalization condition, 
we obtain in zeroth order 

1 = - 2 7 T 0 o > r ( l ) 

and in first order 
2K 

0 = ~ \ (0o , r ( l ) cos 0 — 0 1 > r ( l , 0)) d 0 
0 

or, owing to the 0-independence of 0o(r), 
2 n 

0 = f 0 l i r ( l , 0 ) d 0 . 

In second order one obtains 
2K 

0 = J (02 , r (M) + M 0 ) 0 o , r r ( l ) + 0 o . r ( l ) c O S 2 0 

p(r, e) = ßP ( ^ y 0(r , 0) + {J 0(r , 0) > 0 . (C.2) 

As ßP and, in the interior of the plasma, also 0 (r, 0) are 
positive it holds that 

£ > 0 for a 2 > 0 (C.3) 

because, if £ < 0, the pressure at the plasma edge, 
where the flux function vanishes, would take negative 
values. 

Owing to the properties of the Bessel functions the 

(B.10) expression ( l (<x)J j i s greater than zero. We 

thus get for the ^-dependent term a positive sign and 
for the ^-independent component the expression 

With 
+ MA) 0o , , ( l ) -<Ai , r ( l ) cos 0) dO. 

02(r, 0) = 0 20 (r) + 022 (r) COS 20 

2 J 0 (a) 

a Jx(a) 
J » . (C.4) 

For a 2 > 0 one can then show positive definiteness: 

x s l > 0 . (C.5) 
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For negative a 2 the requirement of positive pressure is 
no longer sufficient for positive Shafranov shift. The 
expression (C.4) then becomes 

1 2 M « ! ! / , 2 
2 I oc I / i ( | a | ) V I oc | 

(C.6) 

and it is seen that for large | a | the term with the 
negative sign is dominant. However, the assumption 
that the pressure rises monotonically in ip from the 
edge to the magnetic axis makes the Shafranov shift 
positive. 

Shape of the Contour Lines 

In order to see how the flux function behaves in the 
interior of the plasma, we consider its contour lines 
ip (r, 0) = c = const. 

After some rearrangement this relation reads 

c = ip0(x, y ) + - i A n ( x , y ) x (C.7) 

For a given value c we denote the contour line by 
Rc{6) and expand in e: 

Rc(0) = Ro(0) + zRi(Ö) + 0 (e 2 ) . (C.8) 

The zeroth order yields an R0 independent of 9 

_ 1 
Ro — ~ Jo + 

Cr» a 
(C.9) 

with the inverse Bessel function J0~ ^s). The appropri-
ate curve is a circle about the origin with radius R0 

which is described by 

x2+y2=R2. 

The first order yields 

x iAii(fl0) 
= kx. 

R 0 <Ao,r(Ko) 

This gives us 

R*(9) = R2+ leRoR^ 0(e2) 

= x2 + y2 + 2skR0x + 0{e2) 

= x 2 + y 2 + ek'x + 0(e2) 

(C.10) 

with 

k'= 2 ^ii(RQ) (C. l l ) 

By shifting the origin of the coordinates by Ax in the 
direction of the positive x-axis it is possible to make 
Rc(9) constant: 

R 2 (x, y) = (x - Ax)2 + y2 + e k'{x - Ax) + 0 (e2) 

= x2 + y2 + (e k' - 2 Ax) x — £ k'Ax + 0 (e2) . 

We choose Ax such that the term linear in x vanishes. 

Ax = \ ek'. (C.12) 

Consequently, all terms linear in e vanish, leaving 

R? = x2 + y2 + 0(e2) = R2+ 0(e2). 

This means that the set of curves Rc describes circles 
with radius R0 that are shifted by Ax. 

Annex D 

It is assumed that a 3 3 is non-zero, which will be 
verified later. In principle, we can then calculate b1 

and assume it to be known in the following. We are 
now left with the reduced system of equations 

(D.l) 

To determine the coefficients of the matrix, we split off 
from the inhomogeneity of the integral equation the 
terms not containing and a2 • This leaves integral 
equations whose inhomogeneous terms are linear in 
X2 and a2 and whose solutions are denoted by «A*o (r) 
and ip22(r). Terms without A2 and a2 are abbreviated by: 

^2o(r) = ^*o(r) + •• 

^22 to = ^ 2 2 + • 

It then follows that 

(D.2 a) 

(D.2b) 

r2o (?) = a2 j (in ~ ~ 2 + K0 (r, r ')) <A!o (O r' dr' 

+ 2ua0 ^ln — — 2J ip20(l) (D.3a) 

+ A2 f ( in ^ - 2 + K0(r, r'ij r' d r ' + a2, 

and 

yjj*22 (r) = z2\K2(r, r') ^*22 (r') r' dr' + (1) r 2 . 
o ^ 

(D.3 b) 
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The solution for a ^ 0 reads 

0*2 (r) = c%0J0{vr) 

with the constant c | 0 

(D.4a) 

the matrix equation (D.l). The determinant of the 
matrix A 

det A = - •M«) 
a N 

1 (M 
]V \ a 2 

c20 — - . I ~ 'U + a : 

and with 

is regular (#= 0), which ensures that the system of in-
(D.4 b) homogeneous equations always has a unique solution. 

The limit a -> 0 yields 

M = 1 - In Ar, In 2 

and 

lim (det A) = -—~ 
a-ov 2N 

1 

iV = M J 0 (a) — ( ln — — 2 J a J J a ) 

4 ln - - 6 
e 

The solution of the problem for 0*2 (r) i s 

0^2 W = 0 . 

This demonstrates that / 2 , a 2 , and ^ can always be 
chosen such that they satisfy all conditions that we 
have imposed on 0 2(r , 0). 

(D.5) 

With these results we write the normalization and Solution for 0 2 2 (r ) 
subsidiary conditions 

(N) — c 2 0 a Jl (a) — 2tt c*o Jo(«) 2 

(B) c*oJo(<*)--T = ••• • 

(D.6a) 

(D.6b) 

In matrix notation we then have 

I M Q | £ 
" a2 N a 2 ' N 

MJ0(a) 1 J0(a) 
a 2 N N 

(D.7) 

We solve the integral equation (59 c). It is of the 
form 

r n 
022 M = a 2 J K2(r, r') 02 2(r ') r' dr' + - A0 02 2(1) r2 + A(r). 

o ^ 

The inhomogeneity ,4(r) is a polynomial in ßP: 

A(r) = A3ß3
P+ß2

PA2(r) + firAl{r) + A0(r). (D.8) 

As the integral equation for 0 2 2(r) is linear in 0 2 2 ( r ) , 
this division can be adopted for the solution: ^ ^ 

<A22(r) = ßp < A 2 2 + ßp + ßp 0221 (r) + 0 2 2 o W-

with The individual components of the solution then satisfy 
the integral equations 

l 

Neither the factor N nor the right-hand side has poles. ^22 i ( r ) = <*2 1 K2(r, r') 0 2 2 i ( r ' ) r' dr' (D.10) 

Q = a ( a ) + 2n a 0 J 0 (a ) . 

^r the factor N nor the righl 
None of the coefficients (i,j = 1, 2) vanishes from 

with the inhomogeneities 

A3(r) = j K2{r, r') [4nc0vaJl (ar') - 2 v r'] r'2 dr' 

^ 2 M = J K 2 (r, r') [ ± c0 a 3 (1 - r'2) ^ (a r') - 5 tc c 0 v a J i ( a r') + § v r'] r'2 dr' 
f v ( l — k x q ) 2 

+ nc0vccr ] K1(r,r')J1(ctr')r' dr' — 
2 a 

r , 

(D.l l a ) 

(D.l l b ) 

r'2 dr' Al(r) = \K2(r, r') nc0a(v-a0) (ar') + | c0 a 3 (r'2 - 1) ^ ( a r ' ) + ± c 0 a 2 r ' J 0 (ar ' ) - - r' 

( 1 v ( l — t : A 0 ) \ , 
+ r { x 1 ( r , r ' ) [ i c 0 a 2 r ' J 0 ( a r ' ) + | c 0 a 3 ( l - r ' 2 ) J 1 ( a r ' ) - 7 t c 0 v a J 1 ( a r ' ) ] r ' d r ' + ( — ^ + ^ 2 ) r ' 

( D . l l c ) 
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and 

A0 (r) = j K2 (r, r') c0 a 2 r' J0 (a r') + ±n c0 A0 a J1 (a r')] r '2 dr' - ± n c0 A0 a r J K l (r, r') J1 (a r') r' dr' 

1149 

1 
7 6 

c 0 J 0 ( a r ) - ^ - ) r 2 - ^ - ( 3 1 n ^ - 4 ) r 2 + 
A 0 ( 1 - 7 E A 0 ) 

8 a2 
r . (D . l ld ) 

We solve the integral equation by using the known 
differential operator L 2 to transform them to the 
equivalent differential equations L2[A0(r)] = -

71 C A 

r J 0 ( a r ) + 
nc0A0 

JI (a r) 

[ r ^ 2 2 i ( r \ r l r + ^ r - j j xj,22i = L 2 [ A M , (D.12a) 

taking their respective boundary conditions into 
account: 

<A22i(0) finite 

and 

( r 2 ^ 2 2 i b ( 1) = 2 7 t l 0 ^ 2 2 i ( l ) + (r2
 r ( l ) . (D.12b) = 

The right-hand sides of the differential equations read 

E2[A3{r)] = -4nc0voir2J1(<xr) + 2vr 3 , (D.13a) 

+ ±c0ar2Jl(ar), (D.13d) 

and the general inhomogeneous solutions are 

^223 W = (n c0 v r 2 - c 2 2 3 ) J0 (a r) 

+ 
2c-, 

a r 
2 v 

• M a r ) H—T1"2 (D.14a) 

16 + ( y - * v j r 2^ - c 2 2 2 J J 0 (a r) 

a , 7rv 
Trr 3 + H + 

2c, 
a r 

L2[A2{r)] = 2nc0vrJ0{ar) 

4TCV(X—2 2 

(D.13b) 

5 v 
2? 

(D.14b) 

471V 

a 

T 2 [^ i ( r>] = c0 f - 1 a V + ( y - 2 ; rv) 

^ ( a r j - f v r 3 , 
v 

5V„3 ^22i(r) = [-\nc0X0r2-c221]J0(oir) + —Tr 

J 0 ( a r ) 
+ l c 0 " 2 4 a r + 

a 7t v 
8 a ) r j 

+ 

2 a2 

a r 

+ c 0 
a 471 v 

71 Aq Of T b" 
2 a 

M*r) 

(D.14c) 

J 1 (a r ) + - v r 3 , (D.13c) ipZ2o(r) = [ " T ^ r 2 - c 2 2 0 ] J 0 ( a r ) 

7TCftAn 2 , 
+ -°-<> r + C 2 2 0 _ y l ( a r ) . (D.14d) 

4 a a r 

The constants c22i are determined from the boundary conditions: 

1 
CTTI — 

C-> -> ~> — 

aJx(a) — 2 7T/l0 J2(a) ( a 

1 

a J ^ a ) — 2n A0 J2(a) 

1 

W — ( 2 7 i 2 A g - 8 ) + - k 

2 TL2 A« V 1 
— A0(l — 7tA0) + - - - — + 8 

3271 2 471 

C-J-J1 
71 Art 71 Ar\ Ar* 1 

H ~ 4" 
aJ j (a ) — 271A0J2(a) [ 2a 2 a 2 8 67c 

1 
a J ^ a ) — 27iA0J2(a) ( 8 a 

3 Ar 
—2"(2 — 71A0) — 

3 In - - 4 
e 

8tt 

(D.15a) 

(D.15b) 

(D.15c) 

(D.15d) 
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