Axisymmetric Magnetohydrodynamic Equilibria without a Wall
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Starting from the ideal magnetohydrodynamic (MHD) equations, we consider the following
axisymmetric configuration: a current-carrying plasma torus in a homogeneous magnetic field that
is aligned parallel to the torus axis. At a certain field strength this configuration is in equilibrium
without need of external current singularities such as wires or walls.The magnetic flux function is
expanded in small inverse aspect ratio. The geometry of this configuration is completely determined
to second order as a function of the profile parameters.

1. Introduction
1.1. Derivation of the Equation

The magnetic field of any stationary current distri-
bution can be completely described in SI units by the
two equations

VX B=pej, 1)
V-B=0. 2
The solenoidal property (2) is satisfied by the ansatz
B=VxA. 3)

The vector potential 4 here is determined apart from
the gradient of a scalar function. With the Coulomb
gauge V- 4 =0 it holds that

AA(r) = — poj(r). )

The solution of this second-order differential equation
is Biot-Savart’s formula familiar from electrodynamics:

Ho J(r)
=10 | IV gy
4n | [r—r| )
|4

A(r)

Axisymmetric magnetic fields can be completely split
into a poloidal and a toroidal component. The poloidal
field can be expressed by the toroidal component 4,
of the vector potential and, if V x A is to describe just
a poloidal field component, 4 itself should have just a
toroidal component:

4,=—YR,2)Vo. (6)
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Like all scalar functions in an axisymmetric configura-
tion, the proportionality factor ¥ (R, z) is independent
of the toroidal angle ¢. Furthermore, for the curl it
follows that

B,,,=Vo xVy.
Solving (6) for ¥ yields
Y(r)=—RA,(r). (7

This means that direct calculation of the flux function
¥ (r) requires that only the ¢-component of the vector
potential A (r) of the current distribution be known.
According to Biot-Savart it is generated solely by the
toroidal current component:

4n | |r—7r|
| 4

4,0=22 o)y @®)

This is converted to the integral over the plasma cross-
section D [1]:
1
A, = —’;i JTVRTR £ (1= Kl — EK)
? - j,(R,Z)dR’ dz,

with the complete elliptic integrals of the first and
second kinds

Oty A

E(k)=|1/1 —k?sin? 6 df
and
F 4o
=] ——
|/1 —k?sin® 0
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as well as the so-called module of the integrals

B 4RR'
T R+RP+(z-2)"

2

Together with (7) this yields an expression for the flux
function y of a toroidal configuration with the ¢-com-
ponent of the equilibrium current density j, (R’, z') and
Green’s function G(R, R/, z, Z') [2]:

V(R 2)=— o [ GR R, 2,2)j,(R, 2)dR ' (9)
D
with
G(R,R,z,Z)= % J/RR[(1- 1 k*) K (k) — E(k)]

and

TR 1 I dI R? dp

Jol ,Z)——E<#o W+ d—l//—>
If the plasma torus is left to itself, it will expand as a
result of the radial forces exerted by the pressure gra-
dient and the product of the plasma current and mag-
netic field. These so-called hoop forces can be com-
pensated by an external homogeneous magnetic field
parallel to the torus axis which interacts with the
toroidal current and exerts a counteracting force.

At infinity the magnetic field generated by the cur-
rents flowing in the torus vanishes, so that only the
homogeneous field is left, for which the notation B, is
used.

In dimensional quantities, it holds that

Y(R)=—1B,R*+c, (10)

Let R, and R, be the largest and lowest value of
R, respectively, for the plasma edge and

= % (Rmax - Rmi“) ? R = % (Rmax + Rmin) .

We call ¢ = 7/R the inverse aspect ratio. Let
J=§ﬂqu,(R, z)dR dz (11)

be the total toroidal current and a, b, x, y, and symbols
with a hat denote dimensionless quantities. We then put

R =R(1+4ex), z=Fy, y=—u,RJY,

J A e

Jo —Jo» G=RG, c=—RJpa,
=
J

B.—zfllob
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Note that J< 0 if B, is going around the magnetic
axis in the mathematically positive sense.

The complete flux function consists of the com-
ponent generated by the current flowing in the plasma
and the component generated by the external field.
After dropping the hats the dimensionless integral
equation reads

l/I(X, J’)=l//p1(X, y)+l//exl(x’ y) (123)

= —” G(x, X, y,¥) j,(x,y)dx dy' + b(1 +ex)* +a.
D

The solution of (12 a) has to satisfy two conditions. We
describe the plasma edge with the relation

'//lrp\,:O-

In the interior of the plasma the flux function is
assumed to be positive. Once and for all, we fix the
intersection of the plasma edge with the R-axis at the
coordinates x = +1. This requirement is called the
subsidiary condition (B):

B) y(x=1,y=0=y(x=—-1,y=0=0.

As second condition we normalize the total toroidal
current to 1, as usual:

(12b)

M e dpes [ Bredie | 2 A
(N) 1_ij,q,(r) da_ajDB dl= jdn = (120

oD

1.2. Linear Profile Functions

The profile functions p’ and I'I can be given arbi-
trarily to a certain extent. They are chosen linear in :

ay = F@¥+0, (13a)
1%=(1 — B @Y + 1), (13b)

with the abbreviations
E=A+Bp—1v, (13¢)
n=Ai+Ppv, (13d)
and A= —n)Pp+n (13e)

and with the poloidal beta
<p
Be=—"—=; (..0=|...d¢y.
r =Byt ¢
B, — 0 is the force-free case with vanishing pressure
gradient and j parallel to B. The term f,¢ describes
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the limit of the pressure gradient when approaching
the plasma edge from the magnetic axis. For fp 0
and non-vanishing £ the pressure gradient is thus dis-
continuous at the plasma edge. Since p > 0 it holds
that £ > 0.

I' is proportional to the poloidal current density.
The term (1 — ) is proportional to the poloidal cur-
rent density at the plasma edge. In the special case
n = 0 it vanishes at the edge, and in the case fp=1 it
vanishes everywhere; the toroidal magnetic field is
then a vacuum field that decreases as 1/R. The param-
eter a2 can be chosen arbitrarily between —co and an
upper bound yet to be defined.

It will be seen that 4 is fixed in zeroth and first order
whenever the current profile parameter a is given. We
then have v for varying the values of the profile func-
tions at the plasma edge B, ¢ and (1 —fp)#; of course
we do not have complete freedom in choosing ¢ and
n because they are related to the poloidal beta and the
current density profile through (13e).

We thus look for solutions of the integral equation

Vx ) == [f 6y, %, 1) Jo(x ) dx dy
+b(1+ex)>+a (14a)
with the toroidal current density

Jo, Y) == (1+ex) B, (e® Y (x, y) + A+ (Bp— 1) V)

1
ol (@Y (x,y) + 4+ Bpv)

and Green’s function G, including the normalization
condition

oy dl
1=—| — 4
j on 14ex’ M0
oD
and the subsidiary condition
¥(1,00=y(-1,0)=0. (14¢)

That makes three conditions altogether. These will be
used to determine the three parameters a, b, and A.

1.3. Expansion

First the factors of the integrand G(x, y, X/, y') and
Jjo(x', ) are expanded in the inverse aspect ratio.
Up to and including fourth order the modulus k2
yields
k2= 1 —%9282+i(x+x’)9283
+16 2 [=3(x+x)+(y —y)1e*+ 0(%) (15)
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= —x)P+@y-y).
In tables of mathematical formulae one finds expan-
sions of elliptical integrals for k about 1 [3]:

ER=1+3(A-DU-K)+Z U -1 —Kk??

+0(1—-k»%), (16a)
K(k)=4 +i;—1(1 — )+ & (4 — D — kP
+0((1 — k2P (16b)

with the abbreviation 4 = In (4/]/1—k?).

In the context of a two-scale method we regard ¢
and In ¢ as two independent quantities. We take In ¢
as a constant and expand in &:

x+x'

8
A=1n—g;+s + & [— L (x+x) 2+ L (v—y)
+0(d). (17)

We require A4 up to and including second order and
therefore have to take the expansion of k? to fourth
order. Substitution of (15) and (17) into (16) yields

N
El=1+2L|m=>—_|+06,
8 oe 2

xtx . 0@ 8
XX 2| (mn>—t
2 +£|:16<n98 )

1 , 1 ,
—§(x+x)2+§(y—y)2]+0(63).

K(k)=1ni+s
Q¢

This gives an expansion for Green’s function
G(R,z,R,Z)=G(x,y, X, )):

(18a)
(18b)

1 n2 \2 QZ 8
Gy=—|x+xY+0 -y +—=|Ih—+1
167 2 Q¢

+ @ —y)? <lni— 2)] (18¢)
o¢

The Taylor series expansion of the toroidal current
density in ¢ yields the following expressions on ex-
panding the parameter A:

—Jpo (X%, y) = o Yolx, y) + 4o (19a)
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o1 (%, y) = oYy (x, y) + 4 (19b)
+x{2Bp— 1) (¥ Yo (x, ) + Zo) + 2(Bp—1) B v}
—Jp2 (X, ¥) = Y5 (x, ) + 4,
+xQ2Bp —1) (@Y, (x, ) +4,) (19¢)
+ x2(1—= Bp) (@Yo (x, y) + Ao+ Bp V).
As y(x, y) in zeroth order will exhibit cylindrical sym-

metry, it is convenient to introduce a polar coordinate
system (r, §) with the relations

x=rcosf, y=rsinf, dxdy=rdrdf.
This yields
0?=r*+r?—2rrcos(0—0).

For the plasma edge it holds that y(r,0) =0. It is
described as a function 7(6, ¢) of the poloidal angle and
aspect ratio. To simplify the notation, the e-dependence
will not always be given explicitly. The subsidiary
condition (14c¢) fixes the edge curve at the intersec-
tions with the R-axis for all orders:

(20)
Altogether then, we expand the following quantities:
Uie,r,0)=yo(r)+ e, (r,0)+ &y, (r,0) + O3,
G(er,0,r,0)=Gy(r,0,r,0)+¢G,(r,0,r,0)
+&2G,(r,0,7,0)+ 0(e3),

Jo(&: T, 8) = joo (1) + €], (1, 8) + £%j,,(r, 0) + O(e),
F(e, 0) = Fo+ e, (0) + & #,(0) + O(e%),
Ae) =Agt+ed, +e2i,+0(),
a(e) =ag+ea,+¢e*a,+0(E%),
b(e) =by+eb,+e*b,+ 0(d)

and regard the parameters a, fp, and v as being arbi-
trary. Here it must always be ensured — especially
with v — that the orders of the expansion are not
perturbed, i.e. that v is small compared with 1/e.

Our mathematical problem thus takes the following
form:

1. Solution of the nonlinear integral equation

2n F(6)

~ [ [ 6r.6.0)),0, 0)rdrde
0 0
(21a)

Y(r,0) =
+b(1 +ercosf)*+a,
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2. Satisfaction of the normalization condition

1= i N 21b
- on 1+e¢ercosf’ (210)
oD
3. Satisfaction of the subsidiary condition
Yy(1,0 =y, 1= (21¢)

Since the edge function 7(¢, 6) is one of the unknown
quantities to be determined, this corresponds to the
solution of a free-boundary problem. The strength of
the applied vertical field governs, among other quanti-
ties, the aspect ratio. Since, however, we want an ex-
pansion in ¢, we have to be able to specify and vary the
aspect ratio, and not the external field, for example.
The vertical field will therefore be matched to ¢ and
not vice versa. Which quantity is specified and which
one is matched to it in order to satisfy the equilibrium
condition is of no importance; the two approaches are
equivalent.

2. Solution
2.1. Zeroth Order
2.1.1. Solution of the Problem

In the case of infinite aspect ratio (¢ = 0) we have to
solve the equation
2z 1

[ [ Golr, 0,7, 0) (2o (r) + Aol ' dr d&’
0e (22a)

Yolr)=
+bo+ag

with due allowance for the normalization condition
(see annex B)

N) Yo, 1)=—1/2n (22b)
and the subsidiary condition

(B)  ¥o(1)=0 (22¢)
First we rewrite (22a):

2n 1

Vo) =02 [ [ Goyo(r)r dr' der
00

2n 1

+ 4 j fGOr’dr’d0’+ bo+a,.
0 0

We then use the fact that y,(r) is angularly indepen-
dent and can therefore be eliminated from the 6'-inte-
gral. The 6'-integration is now carried out [4], a dis-
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tinction being made between the cases r <r' and
r>r:
2z

8
j Go(r,0,r,6)do' =In = 2+ Ky(r,r)
(o]

with

—Inr, r<r,

2n
1 1
) =— In—do =
Kolr, 1) 2n J ng {—lnr,
o)

This then gives us the one-dimensional integral equa-
tion

) |
Vo) = o2 [ Ko(r, ) o) r' dr’
0

8
+ o? <ln

s
1 8 h T
+ Ao T ln;——2 +jK0(r,r)rdr +by+aq.
0

Depending on the sign of 2 various solutions are now
obtained. We distinguish three cases:

r>r.

2) _1[ Yo(r)rdr (23)
0

a®>>0, a real
a? <0,
a?=0.

In addition, «? is assumed to have an upper bound.
The existence of such a bound is deduced by the fol-
lowing reasoning:

If the flux function has extrema in the interior of the
plasma which are not O-points, any perturbation
occurring can lead to the formation of so-called mag-
netic islands, which alter the topology of the flux func-
tion. The flux surfaces are then no longer simply
nested. Various islands can interact and destroy the
magnetic surfaces. The magnetic field lines then
occupy regions in which there is enhanced radial
transport of charged particles, which very severely
impairs the magnetic confinement [5].

In order to rule out such effects from the outset, it
is sufficient to assume the flux function in zeroth order
to be monotonic. What influence this requirement has
on the current profile parameter « will be seen as soon
as Yo (r) is known.

We now consider the following theorem on differen-
tial and integral equations:

Let the differential equation

Lu(x)] + Zeu(x) = x(x)

o imaginary,

be given, where L [u] is a linear differential operator of
second order, A a parameter, x(x) a piecewise con-
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tinuous and ¢(x) a positive continuous function. Let u
satisfy certain boundary conditions. If K(x, &) is the
Green’s function assumed to exist for L [u] which satis-
fies the boundary conditions, then the integral equation

u(x) =4[ K(x, & 0(&) u(®) d& + g(x)
with
g(x)=— [ K(x, & 1(&) d¢

is equivalent to the above differential equation. In
other words, every solution of the differential equation
is also a solution of the integral equation and vice
versa. In particular, the function

u(x) = [ K(x, & (&) dé
satisfies the differential equation
Liul=—¢(x)

with the boundary conditions. Furthermore, if L [u] is
self-adjoint, the kernel of the integral equation K (x, &)
is symmetric with respect to interchange of parameter
and argument: K(x, &) = K(¢, x) [6].

Obviously, we can transform an integral equation
of type (23) into an equivalent differential equation
plus the appropriate boundary condition by using a
suitable differential operator L.

We now use the fact that the Green’s function of the
differential expression belonging to the zeroth order
Bessel function

LO[u] = ru.rr + u,r
for the interval 0 <r <1 with the boundary conditions
u(1) = 0, u(0) finite is the previously determined kernel
Ko(r,r)[7].

This gives us the differential operator relating to our
problem. It is the so-called Bessel differential operator
L, and we now apply it to the integral equation. This
yields the zeroth-order Bessel differential equation

rzlllo,rr+r'/jo.r+a2r2l/’0=—'{0r2 (243)
together with the boundary conditions

Vo(0) finite

and .
8
Yo(l) = a? <ln —— 2) [ wolr)r dr
€ 0
1, ( 8
+-2‘/.0 <1n;——2>+b0+ ag . (24b)

The general homogeneous solutions are the zeroth-
order Bessel and Neumann (often called Weber) func-
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tions of the first kind. The Neumann functions are not
bounded in the origin, which leaves just the zeroth-
order Bessel function of the first kind as homogeneous
solution:

0 (N =coJo(xr).

A special inhomogeneous solution is immediately ob-
tained with

wa‘(s)=—:—‘;.

The general inhomogeneous solution is the sum of the
general homogeneous and the special inhomogeneous
solution:

"

Uolr) = coJolar) = 5. 3)
To be a solution of the integral equation, this function
has to satisfy the boundary condition (24 b). In addi-
tion, we impose the requirements of the normalization
and subsidiary conditions (22b), (22c¢).

To keep the calculation effort small, first we con-
sider the normalization condition (B9). From it we
can calculate c:

1=—-2mncyJy,,(a).

With J, ,(ar) = aJy 4, (o r) = — aJ, () one obtains

1

Co = m . (26)

Through the subsidiary condition ¥ (1) =0 we can
express 4, as a function of a:

_ado(w)
0T 20 () 25

which for small « yields o= —(1 — 3 a?+ 0(a*).

1
T

As /o(r) is now known for positive a?, we can inves-
tigate the circumstances under which the flux function
is monotonic.

For this purpose the argument of the zeroth-order
Bessel function must be smaller than the value at
which the first minimum occur for r = 1. Because of the
relation J,, ,(ar) = —aJ, (ar) this limit is the first zero
Jj11 of the first-order Bessel function:

2 _ 2
* <Ji1 -

Subject to this constraint, the monotonicity of Y, (r) in
the interior of the plasma is ensured.
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We now insert the results for ¢, and 4, in the
boundary condition (24b) and obtain a relation be-
tween the logarithm of the aspect ratio and the con-
stants a, and b,:

8
1n;—2=—2n(a0+b0). (28)
In addition, the original integral equation (23) simpli-
fies to

1 1
Yolr) = a? j. Ko(r, r') Wo(r) rdr + 4, j Ko(r,r)rdr.
0 0 (29)
We now consider the case «? < 0. We assume a to be
purely imaginary and denote the magnitude of o as

|a|. The solutions for «? < 0 are obtained through the
relation

Ju(is)=i"1,(s) (30)
from that for a® > 0:
a=ila] and o®=—|a|>*<0. (31)

Owing to the monotonicity of I,(«r) there is no bound
for negative a?; a? can be taken to — oo without prob-
lems.

Figure 1 shows 4, as a function of + |a|.

In the case a = 0 the integral equation (23) reduces
to

; 1 8
Wolr) = ’;—0(1—r2) +5 4 <1n?— 2) +bot+ag. (31)

Fig. 1. 4, as function of + |«|. The pole is located at a = j, .
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The normalization condition (B9) then yields

do=—,

7[

(32)

and from the subsidiary condition ¥, (1) = 0 we again
obtain the relation

8

In——2=—2n(as+ by). (33)
€
The solution for vanishing « is thus
1
Yol =,—(1— ) (34)
T

The results obtained for o> > 0 and «? < 0 continuously
tend to that in (34).

2.1.2. Various Current Density Profiles

As we have seen, the solution for the flux function
¥ (r) is continuously dependent on the parameter o?,
and o? can take any value in the interval ]— oo; j [.
Particularly interesting is the effect of a? on the cur-
rent density distribution in the plasma. The introduc-
tion of this parameter makes it possible to describe
many different current density profiles and take phe-
nomena such as current reversal and surface current
into consideration. The current density function in
leading order — see (17a) —is

—Jpo(r) = > Yo(r) + o
For positive o we can substitute (27) for 4, to obtain

ady(ar)
T 2nJ(0)°

(35)

—Jgo(r) = (36)
Depending on the choice of a2, various current density
profiles are obtained: If 0 < «* < j3,, the current den-
sity decreases monotonically as r increases; when the
right-hand equality sign is valid, it vanishes at the
plasma edge. If a2 > j2,, the current density changes
sign at r=r,=j,,/a. For r > r, the current flows in the
opposite direction to that on the magnetic axis; the
current reverses. Owing to the constraint o2 <j2,,
which had to be imposed to ensure monotonic ¥(r),
and which also leads to monotonicity of the current
density in the case of linear profile functions, there
exists a minimum r for current reversal:

e
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Current reversal can occur at

Joi _ 2,405

=t ~ 0,628
me =y =389

at the earliest. The plasma edge is located at r=1.

If « tends to zero, the current density profile be-
comes increasingly flat, finally becoming constant
throughout the plasma for o = 0:

. 1
]qu(r) e ;

(37
In the case «? <0 the current density satisfies the
equation

loe| Io (] 7)

5 38
21, (lal) ©38)

Jpo(r)=—
I,(ar) has no zero and increases monotonically. The
farer o is from zero, the more strongly concentrated
is the current at the plasma edge. For large arguments
the following asymptotic formula is valid indepen-
dently of the order n:

I(s)=Q2mns)~ 12 ¢ [1 +0 (%)] ,

and so the current density can be expressed as

(39)

Fooll) =t — % ro12 glalr—1)

For r €]0; 1] the exponent is negative and the current
density vanishes when o grows beyond all limits.

In the limiting case r=0 the exponential function
dominates the pole of r~'/2 and j,,, likewise vanishes.

Finally, at the plasma edge, the exponent becomes
zero and the current density goes linearly in |a| to
infinity:
: Kl
](p0(1) & )eo __27
In the limiting case «>— — oo the entire current is
concentrated in an infinitely thin region at the plasma
edge: The normalization of the total current to one is
retained.

Figure 2 shows —j,(r) for a few values of a.

2.2. First Order
2.2.1. The Ansatz

Taking into account that the upper limit of the
r’-integration is a function of ¢ and ¢, one obtains for
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$=Jgy T =101
T a=5i
a=0
La=175
a =2405
0 \1 =
=3
4

Fig. 2. Toroidal current density profiles for typical values of a.
r = 0: magnetic axis, r = 1: plasma edge.

the first order the integral equation
2n

Yy, 0)= j 71(0') Go(r, 0,1, 0) j,o(1,0)do’
GO(r3 95 r,’ 9’) jwl(r" 0’) r, dr’ d@'

G, (r,0,7,0) jo(r,0)r drde’

oe——,;’ ov__—,': =)
Oty i O oy

+a;+b,+2byrcosf. (40)

We substitute in the integrand the results of the expan-
sion of Green’s function (18) and the current density
(19) and do the 0'-integration except for the term con-
taining ¥, .

The inhomogeneity splits into a 6-independent
component, terms having a factor cos 6, and an ex-
pression with 7, (), whose 6-dependence is uncertain.
The structure of the inhomogeneity suggests for
¥, (r, 0) the ansatz

Yy, 0) =y ,0(r)

It then follows from the expansion of the edge curve
(A9) that #,(0) also takes the form of (41):

Vi(0) _ Yio) i)

+ Yy (r)cosf. 41)

F(0)=— — cos 0
‘ Vo () Wo,(1)  ¥o,(1)
- (42)
=Ffio+ Py c088.
The subsidiary condition (21 ¢) yields
Vo) =y, (D)= (43)

Axisymmetric Magnetohydrodynamic Equilibria without a Wall

According to (42) this means that the correction of the

edge curve 7, (6) vanishes in first order:
£(0)=0 (44)

Deviation of the plasma edge from the circular cross-
section is thus only to be expected as of second order.
The calculation yields the two integral equations

Vio(r) = [ Ko(r, ) Yyo(r) ' dF

o? <ln -i— - 2) [ Yy dr

A
2

GET P Ao

+2(Bp =)o [ Ky F) Yo () P2 dr’

45a)

(m— - 2) + 4, [ Ko(r, ) dr +a,+ by,

)r dr’

+<2v/3,%+2(,10—v)ﬁ —7> | K (r,r)r2dr
2
+%<1n§—1>rj¢o(r')r'dr'

2
% “7 r [ Kolr, ) Yo () ¥ dr

A A 8
+ TOijO(r, ryrdr+ [2b0+ TO <ln e 1>:| r.

We have used the abbreviation

(45b)

1r ,
g =T s
K,(r,1r)= ,
17 ,
== =_ 2T,
2r
which corresponds to
1 2n 1 {
— [ In—cosn®' d¢ = K, (r,r) cos nf
2% 5 0
with .
-
—), r<r
[G)
K..(r,r')=§ , n=1,23,....

r\"
— s r=r
7

The solutions of these integral equations have to satisfy
the normalization and subsidiary conditions

(N)  ¥10,,(1)=0
(B) ‘/’10(1)=‘/’11(1)=

(45¢)
45d)
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Investigation of the f-independent component shows
that ,, (r) vanishes identically for all a? € ] — 00; j, [:

Yi10()=0. (46)
In addition it holds that
a;+b;=0, 4,=0. 47)

Analysis of the #-dependent component yields the
parameter b, the strength of the dimensionless homo-
geneous vertical field in leading order, and a,:

1 8
b0=——<ln——1+ﬂp>
8n €

1—ni
T°[—vﬁ§+ vBe+1i0]. (48a)
1 8
a0=—§;<31n;—7—ﬂp>
1—ni
—7—0[—vﬂ§+vﬂy+%lo]. (481b)

We now have the complete solution of the flux func-
tion up to and including first order:

Y(r, 0)=Yo(r) + ey, (r,0) + O(?) (49a)
with
Ao
Yolr)=coJol(ar) ——, (49b)
o
Yi(r,0) =y (r)cos b, (49¢)
and
Y= {—%V" n g st i Jl(o”')} ﬂg

2 4
+{7«7 vr+ [%0 a(l —r?) — n:o"jl Jl(ar)} Be

A
Beotn Ji(ar).
o

+ fi‘l rJo(ar) — (494)

For a— 0 (49d) reduces to

1 1
ll’u(r):ZlivﬁI%'F(;"V>ﬂp+41—nj|(r—‘r3).

The results of the flux function in first order (49) and
the homogeneous vertical field (48a) were already
published in 1963 by Shafranov [9]. Unlike Shafranov’s
study, the present paper uses an integral equation
method and evaluates to second order. In principle,
however, this expansion can be taken self-consistently
to any order.
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Zeroth order
Plasma edge

VY = const.
R
Vacuum
7 First order
W =const.

7
L

__§hufrunov shift

_\/\

—

Fig. 3. Shafranov shift. Shown are the curves ¥ = const in
zeroth and first order. The plasma edge remains unperturbed.

2.2.2. Shafranov Shift and Contour Lines

The position of the magnetic axis of the plasma is of
physical interest. It is characterized by the vanishing

of the gradient of the flux function:
Vy(rs, 0)=0. (50)

The extremum of the flux function is on the x-axis. We

make the ansatz
Xy = X4 + £X5 + O (7). (51)

In this way we expand (49a) at the location x = x,,
y =0 and obtain in zeroth order
0 =coJo,»(xX0) ,
which, owing to a?< j?,, is equivalent to
(52)

X0 =0.

The first order arranged in powers of fp, yields

4v -
xsl=F B Be

1 4y 1 1—ml,
+|i5—’a—2<7!—— Coa2>]ﬂp+ - . (53)

For a?>> 0 and positive pressure it is then possible to
show positive definiteness of x; .

1
co?
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With negative o? the requirement of positive pres-
sure is no longer sufficient for positive Shafranov shift.
Only when it has been assumed that the pressure in-
creases monotonically in  from the edge to the mag-
netic axis does the Shafranov shift become positive.
For details see Annex C.

In order to see how the flux function behaves in the
interior of the plasma, we consider the contour lines
Y (r, 6)=c=const.

As shown in Annex C, the contour lines are non-
concentric circles. The plasma edge has the origin as
its centre. The farther the circles are away from the
edge, the smaller they become; at the same time, how-
ever, the shift of the centre of the circle increases.

223. Form of the Separatrix

Knowledge of the strength of the homogeneous ver-
tical field provides qualitative data on the flux func-
tion in vacuum. Attention can be restricted to its be-
haviour in the immediate vicinity of the torus axis.
That is where the shape of the separatrix is deter-
mined. The intersection of a magnetic surface with a
poloidal plane generates a curve which is called a
separatrix when at least one so-called X-point exists
on it. At the X-point the poloidal magnetic field van-
ishes and, consequently, the gradient of the flux func-
tion as well:

VY (R,2z)=0. (54)
In principle, two kinds of separatrices are conceivable
in our configuration. The intersections with a poloidal
surface enclose the plasma either in a D-shape or in
the form of a (drop-shaped) loop. The various geome-
tries are sketched in Figs. 4 and 5.

In order to decide now what kind of separatrix is
present, it is sufficient to look at the flux function on
the R-axis (z = 0) for small R. In the drop-shaped case
there is an X-point between the magnetic axis (itself an
O-point) and the torus axis, i.e. in this R-interval there
is a minimum of ¥ (R, 0). For small R, 0y//0R is then
negative, in the D-shaped case it is positive.

In order to obtain an expression for the flux func-
tion in the immediate vicinity of the torus axis, we
think of the plasma cross-section as being concen-
trated at the point (1, 0). One then has

V(R z)=G(R,1,2,0)+ bR*+ a,
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Torus

axis Separatrix

N

y//msmo

Torus
axis
Separatrix
\ Pl\nsmu

5

Fig. 4. D- and drop-shaped separatrices (qualitative).

V(R

°’\/

W(R)

b) __/

0 R 1

Fig. 5. Flux functions (qualitative) for D- and drop-shaped
separatrices. Torus axis at R=0, plasma at R=1.
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and the module of the elliptic integrals in G(R,z,R’,z’) is

g 4R
T (1+R)P’

where R=1+¢x.
We take into account the fact that we normalized
the total current to minus one, and expand the elliptic

integrals for small R. This then yields
Y(R0O=(b+1)R*+a. (55)

a is always negative, and we obtain a minimum (X-
point) for the case b < —1/4. The separatrix is then
drop-shaped. If b > —1/4, it is D-shaped.

2.3. Second Order
23.1. The Ansatz

We now consider the second order of the integral
equations (21):
7(@)
G(r,7r,0,0)j,(,0)rdrde

0
+b(1+ercos@)’+a.

Vi 0)=—

~N
o_'a

According to the results in first order one has
2n

Ya(r, 0)=— | £,(0) Go(r, 6,1, 0) jo(1, 0) 4O’
0

2n 1

— [ [ Go(r,0,7,0) j,o(r, ) ¥ dr' O’
00

Axisymmetric Magnetohydrodynamic Equilibria without a Wall
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2n 1

] [ G 6.7, 8)jpolt', 0 7 dr a0
00
2z 1
—[ [6.tr,6,7,0) jpu(r, 0) r dr d&Y
00
+a,+by+2b,rcos 0 +byr? cos? 6. (56a)

The solution has to satisfy the normalization con-
dition (B12)

'/’20.,»(1) —27mi, Y1) = % (‘/’11.;(1) = ‘I/O,r(l)) (56b)
and the subsidiary condition
B) ¥,(1,00=y,(1,1)=0 (56¢)
According to (A11) and (B9) one has

c o U0

F,(0) = — Vo) 2ny,(1,0), (57)

so that the first term in (56a) must be regarded as
homogeneous. We substitute in the integrand the re-
sults of the expansion of the current density (19) and
Green’s function and can then do the '-integration
except for the term containing v ,(r, 6).

We use the abbreviation

r\? )
— > r<r
i s /£

K,(rr)y=—

4 r,
(—) , r>r.
.

It is found that the inhomogeneity can be completely decomposed into a cos 2 §-dependent, a cos 8-dependent,
and a 6-independent component. By analogy with the discussion in first order, we make the ansatz

¢2 (r7 9) =

Vao(r) + Y, (r)cos 8 + 5, (r) cos 26.

(58)

This is put into the integral equation (56a), and in this way we get three defining equations for V¥, (r), ¥, (r),

and ¥/,,(r):

Va0 () = @ J(ln % —2+ K, r')> Wao(r) ¥ dr + 27 4, (ln % = 2) Yoo+ 4, I (m —i— — 2+ K,(r, r’)) rdr

+5 (10805100 + =B 6200 + 2o+ )] [ — 24 Kofrr) | v

1 8 1
+ f(az Yolr) + 4o) [E (r*+1? <2 In N +1+2K,(r, r’)) =4 rr K, (r, r’)] rdr

+H{azwu(r’) +7 (2B = 1) (@ Wo(r) + 20) + 2B (B — )]}

(592)

8 b
- {(ln = 1) r+rKqrr)+rK,(r, r’)} rdr+a,+b,+ 7°r2 R



1142

Vau () =2 [ Ky(r, ¥) Yo, ()7 dF + mdoay (D + 20,7,

and
Yaa(r)= o? sz(r, )Y, (F)rdr + % Ao lpzz(l)"z
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(59b)

1
+E j Ky (r, ") [2Be—1) a7 Wy (F) + (1= Bp) (62 Yo () + A+ Bpv)r'?] 1 dF

+ T16_ j(az I//O(r') + 10) [— (ln%— 2) r2—r? Ko, r)+2rr K, (r,r)—1? Kz(r,r’)] rdr

4

2.3.2. The Unique Solvability
of the Inhomogeneous Problem

Before we set about solving the inhomogeneous in-
tegral equations (59) for ¥, (r, ), let us see what re-
quirements are imposed on the solutions by the nor-
malization condition and the subsidiary condition, or
whether these requirements can be met at all. First we
set out all the conditions: (60a)

(N) ¥30,,(1) =27 Ao Y20(1) = % (l/’u,r(l) - l/’o,r(l)),
(B) Ya0(1) + Y51 (1) +¢,,(1)=0 for =0, (60b)
(B) Y20(1) =51 (1) +¥2,(1) =0 for 6 =mn. (60¢)

These are three linear equations for our four un-
knowns still occurring in second order, 4,, a,, b,,
and b,.

b, could not be calculated in zeroth order but only
as of first order, and so it is expected that b,_, gener-
ally cannot be calculated until n-th order. The reason
is that in n-th order the subsidiary condition is of the
form

a,+b,+2b,_,=...,

a,+b,—2b,_,=....

The determinant of the solution vector (a,, b, _ ;) does
not vanish, and we remove b, from the set of un-
knowns that can be determined in n-th order, since it
represents a result of the next-higher order. We are
then left with a system of three equations for three
unknowns which can be transformed as follows:

(N)  ¥a0,,(1) =21 AgYp0(1) = % (l//u.r(1) - lpO.r(l))9

(61a)
(By) ¥i0(1) +¥,,(1)=0, (61b)
(By) ¥, (1)=0. (61¢)

(59¢)

& 1 j{“zlﬁu("l)'*' r/[(zﬁp_l)(“z‘po(r’) +;~o) +2Bp(Br—1) V]} {"K1(", r)+r K,(r, r')} rdr+ bz_orz_

As Y,0(r) depends on 4, and a,, ¥,, (r) depends only
on b, and ¥,,(r) is completely determined, we have
the following system of linear equations in matrix rep-
resentation:

a;; a;, 0 A fi
ay; Gy, 0 a|=|r2
0 0 azs/ \b, /s

or, in short,

Ax=f.

(62)

Here we are not at all interested in the explicit solution
vector; rather it is sufficient for us to show that a
unique solution exists, i.c. the determinant does not
vanish. In the first part of Annex D it is shown that 4,,
a,,and b, can always be chosen such that they satisfy
all conditions imposed on ¥, (r, 6).

In considering the flux function in second order we
shall see that it is not necessary for our purpose to

know lpzo, l//21’ and l/’22'
Analysis of ¥, (r) yields

Y2(n=0, b,=0.
The component of y/,(r, 0) that varies as cos 6 thus

vanishes identically, and the component for y,(r, 6)
simplifies to

Y, (r, 0) = Y o0(r) + Y,,(r) cos 26

(63)

(64)

2.3.3. The Edge Curve

We are now interested in the shape of the plasma
edge. As the edge perturbation vanishes in first order,
the edge curve is described by (65)

. ¥,(1, 6) Vy0(1)+¥,,(1) cos 26
0 =1— 2 *=1_ 2
= Vo)

Yo, (1)
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The edge curve in second order is an ellipse whose
axes coincide with the coordinate axes.

The next question to be asked is what the ratio of
the two half-axes Hy=b/a=» is. It is exactly equiva-
lent to the distance between the intersection of the
edge curve with the y-axis and the origin of the coordi-
nate system:

2 l/JZO(:l

He=#(Z)=1
“"<E>‘ T L)

Owing to the subsidiary condition (61 b) this reduces to

¥2,(1)
lpO r(1)

We distinguish three cases:

) —¥2()

Hp=1+2¢ =1—4ney,,(1).

(66)

1. ¥,,(1) <0 ellipse with vertical major axis,
2. Y,,(1)=0 circle,
3. Y,,(1)>0 ellipse with horizontal major axis.

To determine the parameters of the ellipse, one need
not calculate the whole function , (r, 6); it is sufficient
to know y,,(1).

234.Half-Axis Ratio Near the Magnetic Axis

By analogy with first order, the contour lines for
¢ % 0 are expected to be ellipses as well, like the edge
curve, but with variable aspect ratio. We are particu-
larly interested in the readily accessible half-axis ratio
H, in the immediate vicinity of the magnetic axis.

Since the maximum of ¥ is only at a distance O (¢)
from the origin, the vicinity of the maximum of ¥ can
be described by a Taylor expansion in r (neglecting
terms of O (r3) ~ 0(&%)):

Y =yo(r) + ey, (r)cos 6
+ &2 [Y20(r)+5,(r) cos 26] + O (&%)
=Yoo+ Yor P’ + &Yy, 7 cos b
+ &2 [Y200+ Y2027+ Y2557 cos 26] + O(%)
=Yoo+ Vor(x*+y?) + &Yy, x
+8 Y200+ V202 (X + ) +55,(x2— )]+ 0 (%) .

67)

Now, the maximum of y is situated at y=y,=0 and

x=xXo=—3¢eVy1; [Wor+ & (W202+¥322)] "

_ lL3‘#111 “Pu1 4 o).

290 .
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Thus, the contour lines of Y are, in leading order,
described by

(x—X0)? Yoz + € (Y202 + V222l

+ Y2 [Wo2+& (Y202 — ¥322)] = const,  (69)
which are ellipses with half-axis ratio
o2t & (Y202 + ¥222)]"?
A 5 1/2 (70)
o2t e (Y202 —V¥222)]
0
_14e ¥ Loy o1y 2 Y22 | oy

Yoz Yo,rr(0)

So, for the half-axis ratio on the magnetic axis we do
not need the whole function ¥, (r, 6) but only the com-

ponent '//22. rr (0)

2.3.5. Results and Special Cases

The integral equation (59¢) for ¥ ,,(r) is solved in
the second half of Annex D. This enables us to discuss
the form of the flux function qualitatively. In particu-
lar, we shall give the results for the half-axis ratios of
the flux function at the plasma edge Hi and on the
magnetic axis H,. All numerical results given are for

¢=0.1. For Hy we obtained
Hy=1—4ne*y,,(1), (71a)

and now we know ¥/,,(1):

1—mig
V(1) = 3 (B c223+ Bh €222+ Bp 2zt + €320]

0

K2R v
+,33 g +2—2]
o o

1 v
+ ﬂg —m(1+ 7'[/10) —?(2 + nlo):l
.7 1 34
i | 42 247r] 1602 (71b)
H, has likewise been calcuated:
V22,.(0)
H,=1+¢ " (72a)
ll/O rr(O)
with
V22,0 =— (0223 B>+ €222 B2+ €321 B+ €230)

2 5v
—NCeV——-
o
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TCoAy Colt? v
+ﬂ<—%+°T—ncov+?>
_ _ Moo (72a)
8 4

Let us now discuss these results in the case of two
special profiles. On the one hand, we shall assume that
both the toroidal and poloidal current densities and
the pressure gradient at the plasma edge vanish. This
corresponds to the following choices of parameters:

(73a)
(73b)

2 __ 2
o =Jo1>
v =0.

Consequently, both 4, and ¢ and # vanish according
to (13) and (27). For the edge ellipses we then obtain

2

e {1 1
Hk=1+F{5(4—a2)ﬁg+g(a2—8)ﬁp
8
+3ln——4}. (74)
€

The term in braces in (74) is positive for small S, down
to its zero at about f,=3. The edge curve in each case
is an ellipse with vertical major half-axis. Hy is given
for some typical values of the poloidal beta and for
e=0.1:

ﬂP HR

0 1.016
0.5 1.015
1 1.014
1.5 1.011

At Bp=3 the edge curve is a circle, for higher §, an
ellipse with horizontal major axis.

The half-axis ratio on the magnetic axis is given by
the expression

1 5 1
Byl et e
. “'{ <4+32>B" Pt e

+l<3 lnE—4>}. (75)
8 €

For ¢=0.1 the following values are calculated:

Pe H,

0 1.012
0.5 1.009
1 1.003
15 0.996
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Next we want to see what results are obtained for a
flat toroidal current profile. This corresponds to the
choice o = 0.

We calculate

1 1 8
- 2)_ == 2
HR—1+£{ 16+4(3ln8 4)} (76)

This corresponds to the well-known result [10]. How-
ever, for v(1 — fp) = 0 formula (76) contradicts the re-
sult in [11] and [12].

Hg is independent of the poloidal beta and has (for
¢=0.1) the value

Hy =1.022.

For the half-axis ratio on the magnetic axis we obtain

1 1
H, = 1+82{——nvﬂ§+z(nv—1)ﬂp

4
1 8
+3 <3 In—— 4)} (77)

For ¢=0.1 and v=0 the following values are calulated:

BP HA

0 1.023

0.5 1.022

1 1.020

1.5 0.019
Summary

We have considered an axisymmetric MHD equi-
librium with an external homogeneous magnetic field
which is parallel to the torus axis (axis of symmetry).
The magnetic flux function of the equilibrium is de-
scribed by an integral equation representing a nonlin-
ear free-boundary problem. This is solved by an ex-
pansion with respect to the inverse aspect ratio ¢. In
keeping with a two-scale method the quantities ¢ and
In¢ are considered as independent. Linear profile
functions containing four parameters are used.

In leading order (£°) the flux function does not de-
pend on the poloidal angle, so that the level lines are
concentric circles. In first order in ¢ the plasma surface
is unchanged and the level lines are non-concentric
circles (Shafranov-Shift). In second order it is found
that the plasma surface and the level lines are ellipti-
cally deformed. In order to satisfy the solubility condi-
tions, only three of the four profile parameters can be
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chosen independently. This latter fact has not been
correctly treated in references [11] and [12], with the
consequence that the formulae describing the elliptic-
ity in second order are different. In a forthcoming
paper it will be shown how the profile parameters
have to be chosen to make the configuration stable.

Annex A. Expansion of the Edge Curve

The edge of the plasma is described by the condition
Y(r,6)=0. (A1)

The set of all points (r, §), satisfying this criterion is
called the edge curve and is denoted by 7(60). The edge
curve is thus defined by the relation

¥ (#(6),0)=0.

In order to see what effect the aspect ratio has on the
shape of this curve, we expand VY (r, ) and 7(6) in &:

U(r, )=o) + ey (r, 0) + &2 (r, 0) + O(Y) , (A3)
P(6) = Fo(60) + eF,(0) + €2 7,(0) + O (%) . (A4)

(A2)

Substituting in (A.2) now yields
0=1o(fo+—cf +&*F,+...)

+ ey, (Fo+ ef +e*Fy+...,0)

+ 2 Y,(Fo+ ef + & F,+...,0) +....  (AS)
Expanding this according to Taylor, we obtain
0 = Yo(fo) + [y Vo, (Fo) + ¥y (Fo)]

+&2[F2¥0,,(Fo) + 5 F1Wo,, (Fo) + F1 ¥, (Po)
+ ¥, (Pl + O(E) .
From zeroth order of this equation
0= lﬁo(f 0)

it is seen that £, — since Y, is independent of the
poloidal angle — will not be a function of 6. The plasma
boundary condition requires that y (1, 0)=y (1, 7)=0,
thus fixing the value of 7,:

Fo=1.

(A.6)

(A7)

(A.8)

In leading order the plasma edge is thus a circle with
radius 1.
The first order gives

¥,(1,6)

FL(0) = —
( ) lpO.r(I)

(A9)
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and the second order finally yields

#1(6) Yo, (1) + 271 Y1,,(1,0) + 24, (1, 6) _

f20) =~ s, 0)

(A.10)

The solution of the integral equation for Y, (r, 6) in the
main body of the text yields the result that ¥, (1, 6)
and hence also the edge perturbation 7, (6) vanishes in
first order for all 6: ¥/, (1, ) =0. The expression for the
edge curve thus reduces to

2 l//2(15 0)
l/’O,r(l)
Only as of second order does the plasma edge thus

deviate from the circular shape, insofar as ¥, (1, 0) is
non-zero.

FO)=1—¢ (A11)

Annex B. Expansion of the Normalization Condition

The normalization condition (14 b) is

1= ¥ 2a

on R (B.1)

oD
To write the expansion, we have to expand dy/0n, 1/R

and d/ up to and including second order in the inverse
aspect ratio. First we make use of the relation

LA LA
Ty = = =W

The magnitude of the gradient is calculated in the
variables r and 6:

1
IV, O = ¥% + 9%

(B.2)

(B.3)
with

Vi =¥3,+2e¥0, Yy, +8 V0o, Y2, +¥1,1+0()
Yih=eyi,.

Expanding the root of (B.3) to second order, we obtain

VY (r, 0)| = — Yo, () — &, (r, 0)

'/’%.B(r’ 0)
—¢g? I:l/lz',(r, 0) + m:] . (B4)

It must now be taken into account that for the nor-
malization condition we need the integrand at the
location y = const. We therefore convert | Vi (r, 6)| to
|Vy (¥, 6)| and take ¥ at the plasma edge. One then

and
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has #(0) =1+ &2 #,(6) and
IV (Y =0,0)=—yo,(1) —ey, (1,0
— & [Y,,,(1,0)+7,(0) Yo, (1)]

if use is made of the fact that y, 4(1)=0.
In the line element dI? = dr? + r? d6? along a curve
with  =const we express dr(y, 6) as

or or
= —d() —_de,
oy Wk 0

(B.5)

dr(y, 0) =

from which we arrive at the expression

or\2\12
di=r(1 dé .
( e (ae> )
As the second term in the radicand is of order &*, the

line element at the plasma edge up to second order is
dl=+rdo=(1+¢*7,(0)do. (B.7)

(B.6)

The last factor of (B.1) in the integrand is finally calcu-
lated as
11

= =1l—ex+e2x*+0(e
R 1+4+¢x )

=1—c¢rcosf+&2r’cos?0+ 0(e3).

At the plasma edge this becomes

—=1—¢cos 0+ ¢&*cos?f.

2 (B.8)

Substituting all this in the normalization condition,
we obtain in zeroth order

1==-2ny,,1) (B.9)
and in first order
0=~ [ (o, 1050~y 1,0 0
or, owing to the #-independence of ¥ (r),
0=2j:!l//1‘,(1,0) do. (B.10)

In second order one obtains
2n

= [ (W2, (1,0) + #,(0) Yo, (1) + o, (1) cos? 8
0

+#,(0) Yo, (1) =¥, ,(1) cos 6) d6 .
With

Yo(r,0) =y ,0(r) + Y,,(r)cos 20
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and v i
(1,

p )= === B.

7,(0) Vo, () (B.11)
one obtains

1
0= 27 W30, (1) — 27 30 (1) (1 ¥ ";;:;ﬁ;)
+7 ‘po,r(l) —-T l/’11,r(1) .

Because of (24 a) the term in parentheses is 27 4,, and
so the normalization condition in second order re-
duces to

Va0, (1) =272 ¥20(1) = 5 (¥11,,() =¥, (1) . (B.12)

Annex C. Definiteness of the Shafranov Shift

For the following discussion of definiteness it is
more convenient to choose the variables 4, and ¢
Using (13c¢), we obtain (C.1)

1 4 J, (%) A
S e Gl e

Analysis of the f,-independent term shows that it is
positive definite for all a? € ]— o0;j3, [ .

The fp-dependent component can simply be esti-
mated. As the scalar pressure cannot take negative
values, according to (13a) it holds that

2
p(r, 0) = Be <°‘7 v (r, 6) + é) U(r0=0. (C2)

As fp and, in the interior of the plasma, also Y (r, 0) are
positive it holds that

E>0 for o?>0 (C3)

because, if £ <0, the pressure at the plasma edge,
where the flux function vanishes, would take negative
values.

Owing to the properties of the Bessel functions the

2
expression (1 - J5 (a))/ o? is greater than zero. We

thus get for the ¢-dependent term a positive sign and
for the £-independent component the expression

1 2 Jy(a) 2
277 @ (“z’l‘“’)-

(C4)

For a*> 0 one can then show positive definiteness:

X, >0. (C.5)



D. Lortz and W. Haimerl - Axisymmetric Magnetohydrodynamic Equilibria without a Wall

For negative a? the requirement of positive pressure is
no longer sufficient for positive Shafranov shift. The
expression (C.4) then becomes

1 +LM(I_LM|“”>,

— C.6
2 al Laap U Tal (€9

and it is seen that for large |a| the term with the
negative sign is dominant. However, the assumption
that the pressure rises monotonically in  from the
edge to the magnetic axis makes the Shafranov shift
positive.

Shape of the Contour Lines

In order to see how the flux function behaves in the
interior of the plasma, we consider its contour lines
Y (r, )=c=const.

After some rearrangement this relation reads

C=¢d&w+§¢uwa- C.7)

For a given value ¢ we denote the contour line by
R, (6) and expand in &:
R.(0)=R,(0) + eR,(0) + O(?). (C8)

The zeroth order yields an R, independent of

i Y AT Ao
Roy=—Js' | —+—=
o Co Col

with the inverse Bessel function J; *(s). The appropri-
ate curve is a circle about the origin with radius R,
which is described by

(C9)

x?+y?=R}.
The first order yields
_ X ¥11(Ro) _
Ry Yo, (Ro)
This gives us
R2(0) = R3+2eRyR,+ 0(?)
=x2+y?+2ekRyx + 0(¢?)

R, kx. (C.10)

=x2+y*+ek'x + 0(?)
with
kr_ 2 lpll(lz())

= . C.11
Yo Ro) (€11
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By shifting the origin of the coordinates by Ax in the
direction of the positive x-axis it is possible to make
R, (6) constant:

R 2(x,y) = (x—Ax)*+ y>+ ek'(x — Ax) + O(&?)
=x24+ y*+ (ek'— 2Ax) x —e K Ax+ 0 (?) .
We choose Ax such that the term linear in x vanishes.
Ax=3ek'. (C12)
Consequently, all terms linear in ¢ vanish, leaving
R2=x?>+y?+ 0(e*) = R3+ 0(&?).

This means that the set of curves R, describes circles
with radius R, that are shifted by Ax.

Annex D

It is assumed that a,; is non-zero, which will be
verified later. In principle, we can then calculate b,
and assume it to be known in the following. We are
now left with the reduced system of equations

(au a1z><}~2> _ <g1>'
azy Gz;/\4; g2

To determine the coefficients of the matrix, we split off
from the inhomogeneity of the integral equation the
terms not containing 4, and a,. This leaves integral
equations whose inhomogeneous terms are linear in
4, and a, and whose solutions are denoted by /%, (r)
and y,(r). Terms without 4, and a, are abbreviated by:

Yoo =¥3() + ..., (D2a)
Yor () = Y3, +.... (D:2b)

It then follows that

(D.1)

L 8
Y¥o(r) = o I <ln — 2+ K, (r, r’)) * () rdr
)

+2mi, (m%—z) ¥k (1) (D.3a)

1 8
+ 4, j(ln; — 2+ Ky(r, r’)) rdr'+a,,
0
and

1
Y5, =o? j Ky(r, ) y3,()rdr+ g Ao¥3,(1)r2.
° (D.3b)
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The solution for a # 0 reads

V() = ctoJolar) — 23 (D4a)

with the constant c%,
. 1IN

c3o= N (a—z A+ a2> (D.4b)
and with

M=1—2nio<ln§—2)
and ’

N=MJ,(x) — (ln% — 2> od; ().
The solution of the problem for y%,(r) is

U3, =0. (D.5)

With these results we write the normalization and
subsidiary conditions

A
N) —c*al,(®)—27m4i, [cgo Jo (@) — a—j] =...

(D.6a)
* )
(B) c%oJo(a) — T (D.6b)
In matrix notation we then have
MQ 27l ()
o 2 + 2 g = —
oa* N o N As
( > = ... (D.7)
MJy () 1 Jo (o) | \@2
>N a?’ N

with
O=al () +2niyJo(®).

Neither the factor N nor the right-hand side has poles.
None of the coefficients a;; (i, j = 1, 2) vanishes from

with the inhomogeneities

4500 = [ Ky () [dncovad, (@r) — 2vr]r2dr
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the matrix equation (D.1). The determinant of the
matrix A4

J
det A =— L@
aN
is regular (3 0), which ensures that the system of in-
homogeneous equations always has a unique solution.
The limit a — 0 yields

1

2N 8
4In——6
&

lirr(1) (det A) = —

This demonstrates that 4,, a,, and b, can always be
chosen such that they satisfy all conditions that we
have imposed on ¥, (r, 0).

Solution for ¥, (r)

We solve the integral equation (59c¢). It is of the
form

V22 ()= [ K1) i) 1 dr 4+ 2 2 YD PP+ A ()
0

The inhomogeneity A(r) is a polynomial in Sp:
A(r) = A3 PR+ Br A2 (r) + B A, (1) + Ao (r) . (D.8)

As the integral equation for ,, (r) is linear in y/,, (r),
this division can be adopted for the solution: (DY)

Y22(r) = B W 223(r) + Ba V222 (r) + Petaay (1) + Y220 ().

The individual components of the solution then satisfy
the integral equations
1
Vazi() = o [ Ky (7)o, () 7' 7' (D.10)
(4]

+%zow22i(1) P+ A, i=0,1,23

(D.11a)

A, (r)= j. K,y (r,7) [Rcoa®(1—r?) Jy(ar)—5mcovad (ar)+5vr] rdr

+7rcovarj.K,(r,r’)J1(ar’)r’dr’— e

V(l—nio) r2

(D.11b)

v /
A (r)= j K,(r,r) [ncoa(v—io) Jy@r) + Leoa® (= 1) Jy(ar) + 5 coa?r' Jo(ar) — 5 r’] r2dr

+1 [ Ky(r,7) [ coa®r Jo(ar) + eoa® (1 —r?) Jy(ar) —meovady(@r)] r' dr' + <— ==

1 v(1—m4i,) 2
167 202 ’
(D.11¢)
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Ay(r)= _“ K, r)[& cod®r Jo(ar) + L megdgady (@r)) r2dr — i neydgar j. K,(@r,7r)J,(@r)rdr

1 Ao\ 1 8
—R<coJo(cxr) a)r n <3ln——4>

We solve the integral equation by using the known
differential operator L, to transform them to the
equivalent differential equations

W), + (a’ r— %) V2= La[A4,0)], (DA22)
taking their respective boundary conditions into
account:

¥12:(0) finite
and

("2|/’22i).r(1) =27m Ao Y22(1) + (* 4),,(1). (D.12b)
The right-hand sides of the differential equations read

L,[A;()]=—4ncovartJ (ar) + 2vr3, (D.13a)

L,[A,(r)]=2ncovrdy(ar) (D.13b)

1 3 4
+co —a3r4+<4nva—a—>r2—£ Jyar)—3vrd,
2 2 o

Ly[A;(M]=co [—%a2r3+<%2— 27tv> r] Jo(ar)

4 1
+co l:nloarz—%+—n—‘i:| J,(@r) +5vr3, (D.13¢)
o

Ao(1—mAy) 2

= (D.11d)

TCoA TCoh
Lo (] = === rdolan + — = J, (1)

+icoar?Jy(ar), (D.13d)

and the general inhomogeneous solutions are

V223(r) = (mcy V’Z“szs) Jo(ar)

2 2
+5928 j an+ 2. (Dl4a)
or o

o A 2¢ Sv
+ {co |:§ r+ —a—r] + azrzz}Jl(ar)—Ea—zrz,

(D.14b)
v
Va2 0) = [— o o = oz ] Joan) + 55 7
5 ®a mv 2¢55,
+{Co|: 24atr +(8— a)r]+ s }J(ar)
(D.14¢)

Va20(r) = [—ﬁco"z— €220l Jo(a7)

s 2
+|:—%r+c220 ]Jl(ar) (D.14d)

The constants c,,; are determined from the boundary conditions:

By = T @ ;nAOJZ(a) v {;12— 2n?2i—8) + %}, (D.152)

©222= @) — 2n,1012(a) { '{°(1 At 30;.2 =g 417: +8a_v2}’ (s

=y 2“0J2(a) { 2'1" ”'12 —ﬁ+ %} (D.15¢)
3 2, 3 ln§—4

€220 = @ — 2nloJ2(a) {§ o = T} e
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